- 1. How are polar coordinates different from rectangular coordinates?
2. How are the polar axes different from the x– and y-axes of the Cartesian plane?
3. Explain how polar coordinates are graphed.
4. How are the points [latex]\left(3,\frac{\pi }{2}\right)[/latex] and [latex]\left(-3,\frac{\pi }{2}\right)[/latex] related?
5. Explain why the points [latex]\left(-3,\frac{\pi }{2}\right)[/latex] and [latex]\left(3,-\frac{\pi }{2}\right)[/latex] are the same.
For the following exercises, convert the given polar coordinates to Cartesian coordinates with [latex]r>0[/latex] and [latex]0\le \theta \le 2\pi [/latex]. Remember to consider the quadrant in which the given point is located when determining [latex]\theta [/latex] for the point.
6. [latex]\left(7,\frac{7\pi }{6}\right)[/latex]
7. [latex]\left(5,\pi \right)[/latex]
8. [latex]\left(6,-\frac{\pi }{4}\right)[/latex]
9. [latex]\left(-3,\frac{\pi }{6}\right)[/latex]
10. [latex]\left(4,\frac{7\pi }{4}\right)[/latex]
For the following exercises, convert the given Cartesian coordinates to polar coordinates with [latex]r>0,0\le \theta <2\pi [/latex]. Remember to consider the quadrant in which the given point is located.
11. [latex]\left(4,2\right)[/latex]
12. [latex]\left(-4,6\right)[/latex]
13. [latex]\left(3,-5\right)[/latex]
14. [latex]\left(-10,-13\right)[/latex]
15. [latex]\left(8,8\right)[/latex]
For the following exercises, convert the given Cartesian equation to a polar equation.
16. [latex]x=3[/latex]
17. [latex]y=4[/latex]
18. [latex]y=4{x}^{2}[/latex]
19. [latex]y=2{x}^{4}[/latex]
20. [latex]{x}^{2}+{y}^{2}=4y[/latex]
21. [latex]{x}^{2}+{y}^{2}=3x[/latex]
22. [latex]{x}^{2}-{y}^{2}=x[/latex]
23. [latex]{x}^{2}-{y}^{2}=3y[/latex]
24. [latex]{x}^{2}+{y}^{2}=9[/latex]
25. [latex]{x}^{2}=9y[/latex]
26. [latex]{y}^{2}=9x[/latex]
27. [latex]9xy=1[/latex]
For the following exercises, convert the given polar equation to a Cartesian equation. Write in the standard form of a conic if possible, and identify the conic section represented.
28. [latex]r=3\sin \theta [/latex]
29. [latex]r=4\cos \theta [/latex]
30. [latex]r=\frac{4}{\sin \theta +7\cos \theta }[/latex]
31. [latex]r=\frac{6}{\cos \theta +3\sin \theta }[/latex]
32. [latex]r=2\sec \theta [/latex]
33. [latex]r=3\csc \theta [/latex]
34. [latex]r=\sqrt{r\cos \theta +2}[/latex]
35. [latex]{r}^{2}=4\sec \theta \csc \theta [/latex]
36. [latex]r=4[/latex]
37. [latex]{r}^{2}=4[/latex]
38. [latex]r=\frac{1}{4\cos \theta -3\sin \theta }[/latex]
39. [latex]r=\frac{3}{\cos \theta -5\sin \theta }[/latex]
For the following exercises, find the polar coordinates of the point.
40.
41.
42.
43.
44.
For the following exercises, plot the points.
45. [latex]\left(-2,\frac{\pi }{3}\right)[/latex]
46. [latex]\left(-1,-\frac{\pi }{2}\right)[/latex]
47. [latex]\left(3.5,\frac{7\pi }{4}\right)[/latex]
48. [latex]\left(-4,\frac{\pi }{3}\right)[/latex]
49. [latex]\left(5,\frac{\pi }{2}\right)[/latex]
50. [latex]\left(4,\frac{-5\pi }{4}\right)[/latex]
51. [latex]\left(3,\frac{5\pi }{6}\right)[/latex]
52. [latex]\left(-1.5,\frac{7\pi }{6}\right)[/latex]
53. [latex]\left(-2,\frac{\pi }{4}\right)[/latex]
54. [latex]\left(1,\frac{3\pi }{2}\right)[/latex]
For the following exercises, convert the equation from rectangular to polar form and graph on the polar axis.
55. [latex]5x-y=6[/latex]
56. [latex]2x+7y=-3[/latex]
57. [latex]{x}^{2}+{\left(y - 1\right)}^{2}=1[/latex]
58. [latex]{\left(x+2\right)}^{2}+{\left(y+3\right)}^{2}=13[/latex]
59. [latex]x=2[/latex]
60. [latex]{x}^{2}+{y}^{2}=5y[/latex]
61. [latex]{x}^{2}+{y}^{2}=3x[/latex]
For the following exercises, convert the equation from polar to rectangular form and graph on the rectangular plane.
62. [latex]r=6[/latex]
63. [latex]r=-4[/latex]
64. [latex]\theta =-\frac{2\pi }{3}[/latex]
65. [latex]\theta =\frac{\pi }{4}[/latex]
66. [latex]r=\sec \theta [/latex]
67. [latex]r=-10\sin \theta [/latex]
68. [latex]r=3\cos \theta [/latex]
69. Use a graphing calculator to find the rectangular coordinates of [latex]\left(2,-\frac{\pi }{5}\right)[/latex]. Round to the nearest thousandth.
70. Use a graphing calculator to find the rectangular coordinates of [latex]\left(-3,\frac{3\pi }{7}\right)[/latex]. Round to the nearest thousandth.
71. Use a graphing calculator to find the polar coordinates of [latex]\left(-7,8\right)[/latex] in degrees. Round to the nearest thousandth.
72. Use a graphing calculator to find the polar coordinates of [latex]\left(3,-4\right)[/latex] in degrees. Round to the nearest hundredth.
73. Use a graphing calculator to find the polar coordinates of [latex]\left(-2,0\right)[/latex] in radians. Round to the nearest hundredth.
74. Describe the graph of [latex]r=a\sec \theta ;a>0[/latex].
75. Describe the graph of [latex]r=a\sec \theta ;a<0[/latex].
76. Describe the graph of [latex]r=a\csc \theta ;a>0[/latex].
77. Describe the graph of [latex]r=a\csc \theta ;a<0[/latex].
78. What polar equations will give an oblique line?
For the following exercises, graph the polar inequality.
79. [latex]r<4[/latex]
80. [latex]0\le \theta \le \frac{\pi }{4}[/latex]
81. [latex]\theta =\frac{\pi }{4},r\ge 2[/latex]
82. [latex]\theta =\frac{\pi }{4},r\ge -3[/latex]
83. [latex]0\le \theta \le \frac{\pi }{3},r<2[/latex]
84. [latex]\frac{-\pi }{6}<\theta \le \frac{\pi }{3},-3<r<2[/latex]