Solutions 71: Finding Limits: Properties of Limits

Solutions to Odd-Numbered Exercises

1. If f is a polynomial function, the limit of a polynomial function as x approaches a will always be f(a).

3. It could mean either (1) the values of the function increase or decrease without bound as x approaches c, or (2) the left and right-hand limits are not equal.

5. 103

7. 6

9. 12

11. 6

13. does not exist

15. 12

17. 510

19. 108

21. 1

23. 6

25. 1

27. 1

29. does not exist

31. 6+5

33. 35

35. 0

37. 3

39. does not exist; right-hand limit is not the same as the left-hand limit.

41. Limit does not exist; limit approaches infinity.

43. 4x+2h

45. 2x+h+4

47. cos(x+h)cos(x)h

49. 1x(x+h)

51. 1x+h+x

53. f(x)=x2+5x+6x+3

55. does not exist

57. 52