Solutions 53: Double-Angle, Half-Angle, and Reduction Formulas

Solution to Odd-Numbered Exercises

1. Use the Pythagorean identities and isolate the squared term.

3. 1cosxsinx,sinx1+cosx1cosxsinx,sinx1+cosx, multiplying the top and bottom by 1cosx1cosx and 1+cosx1+cosx, respectively.

5. a) 37323732 b) 31323132 c) 37313731

7. a) 3232 b) 1212 c) 33

9. cosθ=255,sinθ=55,tanθ=12,cscθ=5,secθ=52,cotθ=2cosθ=255,sinθ=55,tanθ=12,cscθ=5,secθ=52,cotθ=2

11. 2sin(π2)2sin(π2)

13. 222222

15. 232232

17. 2+32+3

19. 1212

21. a) 3131331313 b) 2131321313 c) 3232

23. a) 104104 b) 6464 c) 153153

25. 120169,119169,120119120169,119169,120119

27. 21313,31313,2321313,31313,23

29. cos(74)cos(74)

31. cos(18x)cos(18x)

33. 3sin(10x)3sin(10x)

35. 2sin(x)cos(x)=2(sin(x)cos(x))=sin(2x)2sin(x)cos(x)=2(sin(x)cos(x))=sin(2x)

37. sin(2θ)1+cos(2θ)tan2θ=2sin(θ)cos(θ)1+cos2θsin2θtan2θ=2sin(θ)cos(θ)2cos2θtan2θ=sin(θ)cosθtan2θ=cot(θ)tan2θ=tanθsin(2θ)1+cos(2θ)tan2θ=2sin(θ)cos(θ)1+cos2θsin2θtan2θ=2sin(θ)cos(θ)2cos2θtan2θ=sin(θ)cosθtan2θ=cot(θ)tan2θ=tanθ

39. 1+cos(12x)2

41. 3+cos(12x)4cos(6x)8

43. 2+cos(2x)2cos(4x)cos(6x)32

45. 3+cos(4x)4cos(2x)3+cos(4x)+4cos(2x)

47. 1cos(4x)8

49. 3+cos(4x)4cos(2x)4(cos(2x)+1)

51. (1+cos(4x))sinx2

53. 4sinxcosx(cos2xsin2x)

55. 2tanx1+tan2x=2sinxcosx1+sin2xcos2x=2sinxcosxcos2x+sin2xcos2x=
2sinxcosx.cos2x1=2sinxcosx=sin(2x)

57. 2sinxcosx2cos2x1=sin(2x)cos(2x)=tan(2x)

59. sin(x+2x)=sinxcos(2x)+sin(2x)cosx=sinx(cos2xsin2x)+2sinxcosxcosx=sinxcos2xsin3x+2sinxcos2x=3sinxcos2xsin3x

61. 1+cos(2t)sin(2t)cost=1+2cos2t12sintcostcost=2cos2tcost(2sint1)=2cost2sint1

63. (cos2(4x)sin2(4x)sin(8x))(cos2(4x)sin2(4x)+sin(8x))= =(cos(8x)sin(8x))(cos(8x)+sin(8x)) =cos2(8x)sin2(8x) =cos(16x)