Solution to Odd-Numbered Exercises
1. Use the Pythagorean identities and isolate the squared term.
3. 1−cosxsinx,sinx1+cosx1−cosxsinx,sinx1+cosx, multiplying the top and bottom by √1−cosx√1−cosx and √1+cosx√1+cosx, respectively.
5. a) 3√7323√732 b) 31323132 c) 3√7313√731
7. a) √32√32 b) −12−12 c) −√3−√3
9. cosθ=−2√55,sinθ=√55,tanθ=−12,cscθ=√5,secθ=−√52,cotθ=−2cosθ=−2√55,sinθ=√55,tanθ=−12,cscθ=√5,secθ=−√52,cotθ=−2
11. 2sin(π2)2sin(π2)
13. √2−√22√2−√22
15. √2−√32√2−√32
17. 2+√32+√3
19. −1−√2−1−√2
21. a) 3√13133√1313 b) −2√1313−2√1313 c) −32−32
23. a) √104√104 b) √64√64 c) √153√153
25. 120169,−119169,−120119120169,−119169,−120119
27. 2√1313,3√1313,232√1313,3√1313,23
29. cos(74∘)cos(74∘)
31. cos(18x)cos(18x)
33. 3sin(10x)3sin(10x)
35. −2sin(−x)cos(−x)=−2(−sin(x)cos(x))=sin(2x)−2sin(−x)cos(−x)=−2(−sin(x)cos(x))=sin(2x)
37. sin(2θ)1+cos(2θ)tan2θ=2sin(θ)cos(θ)1+cos2θ−sin2θtan2θ=2sin(θ)cos(θ)2cos2θtan2θ=sin(θ)cosθtan2θ=cot(θ)tan2θ=tanθsin(2θ)1+cos(2θ)tan2θ=2sin(θ)cos(θ)1+cos2θ−sin2θtan2θ=2sin(θ)cos(θ)2cos2θtan2θ=sin(θ)cosθtan2θ=cot(θ)tan2θ=tanθ
39. 1+cos(12x)2
41. 3+cos(12x)−4cos(6x)8
43. 2+cos(2x)−2cos(4x)−cos(6x)32
45. 3+cos(4x)−4cos(2x)3+cos(4x)+4cos(2x)
47. 1−cos(4x)8
49. 3+cos(4x)−4cos(2x)4(cos(2x)+1)
51. (1+cos(4x))sinx2
53. 4sinxcosx(cos2x−sin2x)
55. 2tanx1+tan2x=2sinxcosx1+sin2xcos2x=2sinxcosxcos2x+sin2xcos2x=
2sinxcosx.cos2x1=2sinxcosx=sin(2x)
57. 2sinxcosx2cos2x−1=sin(2x)cos(2x)=tan(2x)
59. sin(x+2x)=sinxcos(2x)+sin(2x)cosx=sinx(cos2x−sin2x)+2sinxcosxcosx=sinxcos2x−sin3x+2sinxcos2x=3sinxcos2x−sin3x
61. 1+cos(2t)sin(2t)−cost=1+2cos2t−12sintcost−cost=2cos2tcost(2sint−1)=2cost2sint−1
63. (cos2(4x)−sin2(4x)−sin(8x))(cos2(4x)−sin2(4x)+sin(8x))= =(cos(8x)−sin(8x))(cos(8x)+sin(8x)) =cos2(8x)−sin2(8x) =cos(16x)
Candela Citations
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution