Solutions to Odd-Numbered Answers
1. a is the real part, b is the imaginary part, and [latex]i=\sqrt{−1}[/latex]
3. Polar form converts the real and imaginary part of the complex number in polar form using [latex]x=r\cos\theta[/latex] and [latex]y=r\sin\theta[/latex]
5. [latex]z^{n}=r^{n}\left(\cos\left(n\theta\right)+i\sin\left(n\theta\right)\right)[/latex]. It is used to simplify polar form when a number has been raised to a power.
7. [latex]5\sqrt{2}[/latex]
9. [latex]\sqrt{38}[/latex]
11. [latex]\sqrt{14.45}[/latex]
13. [latex]4\sqrt{5}\text{cis}\left(333.4^{\circ}\right)[/latex]
15. [latex]2\text{cis}\left(\frac{\pi}{6}\right)[/latex]
17. [latex]\frac{7\sqrt{3}}{2}+i\frac{7}{2}[/latex]
19. [latex]−2\sqrt{3}−2i[/latex]
21. [latex]−1.5−i\frac{3\sqrt{3}}{2}[/latex]
23. [latex]4\sqrt{3}\text{cis}\left(198^{\circ}\right)[/latex]
25. [latex]\frac{3}{4}\text{cis}\left(180^{\circ}\right)[/latex]
27. [latex]5\sqrt{3}\text{cis}\left(\frac{17\pi}{24}\right)[/latex]
29. [latex]7\text{cis}\left(70^{\circ}\right)[/latex]
31. [latex]5\text{cis}\left(80^{\circ}\right)[/latex]
33. [latex]5\text{cis}\left(\frac{\pi}{3}\right)[/latex]
35. [latex]125\text{cis}\left(135^{\circ}\right)[/latex]
37. [latex]9\text{cis}\left(240^{\circ}\right)[/latex]
39. [latex]\text{cis}\left(\frac{3\pi}{4}\right)[/latex]
41. [latex]3\text{cis}\left(80^{\circ}\right)\text{, }3\text{cis}\left(200^{\circ}\right)\text{, }3\text{cis}\left(320^{\circ}\right)[/latex]
43. [latex]2\sqrt[3]{4}\text{cis}\left(\frac{2\pi}{9}\right)\text{, }2\sqrt[3]{4}\text{cis}\left(\frac{8\pi}{9}\right)\text{, }2\sqrt[3]{4}\text{cis}\left(\frac{14\pi}{9}\right)[/latex]
45. [latex]2\sqrt{2}\text{cis}\left(\frac{7\pi}{8}\right)\text{, }2\sqrt{2}\text{cis}\left(\frac{15\pi}{8}\right)[/latex]
47.
49.
51.
53.
55.
57. [latex]3.61e^{−0.59i}[/latex]
59. [latex]−2+3.46i[/latex]
61. [latex]−4.33−2.50i[/latex]