Solutions to Odd-Numbered Exercises
1. All three functions, [latex]F,G[/latex], and [latex]H[/latex], are even.
This is because [latex]F\left(-x\right)=\sin \left(-x\right)\sin \left(-x\right)=\left(-\sin x\right)\left(-\sin x\right)={\sin }^{2}x=F\left(x\right),G\left(-x\right)=\cos \left(-x\right)\cos \left(-x\right)=\cos x\cos x={\cos }^{2}x=G\left(x\right)[/latex] and [latex]H\left(-x\right)=\tan \left(-x\right)\tan \left(-x\right)=\left(-\tan x\right)\left(-\tan x\right)={\tan }^{2}x=H\left(x\right)[/latex].
3. When [latex]\cos t=0[/latex], then [latex]\sec t=\frac{1}{0}[/latex], which is undefined.
5. [latex]\sin x[/latex]
7. [latex]\sec x[/latex]
9. [latex]\csc t[/latex]
11. [latex]-1[/latex]
13. [latex]{\sec }^{2}x[/latex]
15. [latex]{\sin }^{2}x+1[/latex]
17. [latex]\frac{1}{\sin x}[/latex]
19. [latex]\frac{1}{\cot x}[/latex]
21. [latex]\tan x[/latex]
23. [latex]-4\sec x\tan x[/latex]
25. [latex]\pm \sqrt{\frac{1}{{\cot }^{2}x}+1}[/latex]
27. [latex]\frac{\pm \sqrt{1-{\sin }^{2}x}}{\sin x}[/latex]
29. Answers will vary. Sample proof:
[latex]\cos x-{\cos }^{3}x=\cos x\left(1-{\cos }^{2}x\right)[/latex]
[latex]=\cos x{\sin }^{2}x[/latex]
31. Answers will vary. Sample proof:
[latex]\frac{1+{\sin }^{2}x}{{\cos }^{2}x}=\frac{1}{{\cos }^{2}x}+\frac{{\sin }^{2}x}{{\cos }^{2}x}={\sec }^{2}x+{\tan }^{2}x={\tan }^{2}x+1+{\tan }^{2}x=1+2{\tan }^{2}x[/latex]
33. Answers will vary. Sample proof:
[latex]{\cos }^{2}x-{\tan }^{2}x=1-{\sin }^{2}x-\left({\sec }^{2}x - 1\right)=1-{\sin }^{2}x-{\sec }^{2}x+1=2-{\sin }^{2}x-{\sec }^{2}x[/latex]
35. False
37. False
39. Proved with negative and Pythagorean identities
41. True
[latex]3{\sin }^{2}\theta +4{\cos }^{2}\theta =3{\sin }^{2}\theta +3{\cos }^{2}\theta +{\cos }^{2}\theta =3\left({\sin }^{2}\theta +{\cos }^{2}\theta \right)+{\cos }^{2}\theta =3+{\cos }^{2}\theta [/latex]