Solutions to Odd-Numbered Answers
1. The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x, the second angle measures π2−x. Then sinx=cos(π2−x). The same holds for the other cofunction identities. The key is that the angles are complementary.
3. sin(−x)=−sinx, so sinx is odd. cos(−x)=cos(0−x)=cosx, so cosx is even.
5. √2+√64
7. √6−√24
9. −2−√3
11. −√22sinx−√22cosx
13. −12cosx−√32sinx
15. cscθ
17. cotx
19. tan(x10)
21. sin(a−b)=(45)(13)−(35)(2√23)=4−6√215
cos(a+b)=(35)(13)−(45)(2√23)=3−8√215
23. √2−√64
25. sinx
27. cot(π6−x)
29. cot(π4+x)
31. sinx√2+cosx√2
33. They are the same.
35. They are the different, try g(x)=sin(9x)−cos(3x)sin(6x).
37. They are the same.
39. They are the different, try g(θ)=2tanθ1−tan2θ.
41. They are different, try g(x)=tanx−tan(2x)1+tanxtan(2x).
43. −√3−12√2, or −0.2588
45. 1+√32√2, or 0.9659
47. tan(x+π4)=tanx+tan(π4)1−tanxtan(π4)=tanx+11−tanx(1)=tanx+11−tanx
49. cos(a+b)cosacosb=cosacosbcosacosb−sinasinbcosacosb=1−tanatanb
51. cos(x+h)−cosxh=cosxcosh−sinxsinh−cosxh=cosx(cosh−1)−sinxsinhh=cosxcosh−1h−sinxsinhh
53. True
55. True. Note that sin(α+β)=sin(π−γ) and expand the right hand side.
Candela Citations
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution