Solutions 52: Sum and Difference Identities

Solutions to Odd-Numbered Answers

1. The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x, the second angle measures π2x. Then sinx=cos(π2x). The same holds for the other cofunction identities. The key is that the angles are complementary.

3. sin(x)=sinx, so sinx is odd. cos(x)=cos(0x)=cosx, so cosx is even.

5. 2+64

7. 624

9. 23

11. 22sinx22cosx

13. 12cosx32sinx

15. cscθ

17. cotx

19. tan(x10)

21. sin(ab)=(45)(13)(35)(223)=46215
cos(a+b)=(35)(13)(45)(223)=38215

23. 264

25. sinx

Graph of y=sin(x) from -2pi to 2pi.

27. cot(π6x)

Graph of y=cot(pi/6 - x) from -2pi to pi - in comparison to the usual y=cot(x) graph, this one is reflected across the x-axis and shifted by pi/6.

29. cot(π4+x)

Graph of y=cot(pi/4 + x) - in comparison to the usual y=cot(x) graph, this one is shifted by pi/4.

31. sinx2+cosx2

Graph of y = sin(x) / rad2 + cos(x) / rad2 - it looks like the sin curve shifted by pi/4.

 

33. They are the same.

35. They are the different, try g(x)=sin(9x)cos(3x)sin(6x).

37. They are the same.

39. They are the different, try g(θ)=2tanθ1tan2θ.

41. They are different, try g(x)=tanxtan(2x)1+tanxtan(2x).

43. 3122, or 0.2588

45. 1+322, or 0.9659

47. tan(x+π4)=tanx+tan(π4)1tanxtan(π4)=tanx+11tanx(1)=tanx+11tanx

 

49. cos(a+b)cosacosb=cosacosbcosacosbsinasinbcosacosb=1tanatanb

51. cos(x+h)cosxh=cosxcoshsinxsinhcosxh=cosx(cosh1)sinxsinhh=cosxcosh1hsinxsinhh

53. True

55. True. Note that sin(α+β)=sin(πγ) and expand the right hand side.