Solutions 54: Sum-to-Product and Product-to-Sum Formulas

Solutions to Odd-Numbered Exercises

1. Substitute αα into cosine and ββ into sine and evaluate.

3. Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin(3x)+sinxcosx=1sin(3x)+sinxcosx=1. When converting the numerator to a product the equation becomes: 2sin(2x)cosxcosx=1

5. 8(cos(5x)cos(27x))

7. sin(2x)+sin(8x)

9. 12(cos(6x)cos(4x))

11. 2cos(5t)cost

13. 2cos(7x)

15. 2cos(6x)cos(3x)

17. 14(1+3)

19. 14(32)

21. 14(31)

23. cos(80)cos(120)

25. 12(sin(221)+sin(205))

27. 2cos(31)

29. 2cos(66.5)sin(34.5)

31. 2sin(1.5)cos(0.5)

33. 2sin(7x)2sinx=2sin(4x+3x)2sin(4x3x)=2(sin(4x)cos(3x)+sin(3x)cos(4x))2(sin(4x)cos(3x)sin(3x)cos(4x))=2sin(4x)cos(3x)+2sin(3x)cos(4x)2sin(4x)cos(3x)+2sin(3x)cos(4x)=4sin(3x)cos(4x)

 

35. sinx+sin(3x)=2sin(4x2)cos(2x2)=
2sin(2x)cosx=2(2sinxcosx)cosx=
4sinxcos2x

37. 2tanxcos(3x)=2sinxcos(3x)cosx=2(.5(sin(4x)sin(2x)))cosx
=1cosx(sin(4x)sin(2x))=secx(sin(4x)sin(2x))

39. 2cos(35)cos(23), 1.5081

41. 2sin(33)sin(11), 0.2078

43. 12(cos(99)cos(71)), 0.2410

45. It is an identity.

47. It is not an identity, but 2cos3x is.

49. tan(3t)

51. 2cos(2x)

53. sin(14x)

55. Start with cosx+cosy. Make a substitution and let x=α+β and let y=αβ, so cosx+cosy becomes

cos(α+β)+cos(αβ)=cosαcosβsinαsinβ+cosαcosβ+sinαsinβ=2cosαcosβ

Since x=α+β and y=αβ, we can solve for α and β in terms of x and y and substitute in for 2cosαcosβ and get 2cos(x+y2)cos(xy2).

57. cos(3x)+cosxcos(3x)cosx=2cos(2x)cosx2sin(2x)sinx=cot(2x)cotx

59. cos(2y)cos(4y)sin(2y)+sin(4y)=2sin(3y)sin(y)2sin(3y)cosy=2sin(3y)sin(y)2sin(3y)cosy=tany

61. cosxcos(3x)=2sin(2x)sin(x)=2(2sinxcosx)sinx=4sin2xcosx

63. tan(π4t)=tan(π4)tant1+tan(π4)tan(t)=1tant1+tant