Solutions to Odd-Numbered Exercises
1. Substitute αα into cosine and ββ into sine and evaluate.
3. Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin(3x)+sinxcosx=1sin(3x)+sinxcosx=1. When converting the numerator to a product the equation becomes: 2sin(2x)cosxcosx=1
5. 8(cos(5x)−cos(27x))
7. sin(2x)+sin(8x)
9. 12(cos(6x)−cos(4x))
11. 2cos(5t)cost
13. 2cos(7x)
15. 2cos(6x)cos(3x)
17. 14(1+√3)
19. 14(√3−2)
21. 14(√3−1)
23. cos(80∘)−cos(120∘)
25. 12(sin(221∘)+sin(205∘))
27. √2cos(31∘)
29. 2cos(66.5∘)sin(34.5∘)
31. 2sin(−1.5∘)cos(0.5∘)
33. 2sin(7x)−2sinx=2sin(4x+3x)−2sin(4x−3x)=2(sin(4x)cos(3x)+sin(3x)cos(4x))−2(sin(4x)cos(3x)−sin(3x)cos(4x))=2sin(4x)cos(3x)+2sin(3x)cos(4x)−2sin(4x)cos(3x)+2sin(3x)cos(4x)=4sin(3x)cos(4x)
35. sinx+sin(3x)=2sin(4x2)cos(−2x2)=
2sin(2x)cosx=2(2sinxcosx)cosx=
4sinxcos2x
37. 2tanxcos(3x)=2sinxcos(3x)cosx=2(.5(sin(4x)−sin(2x)))cosx
=1cosx(sin(4x)−sin(2x))=secx(sin(4x)−sin(2x))
39. 2cos(35∘)cos(23∘), 1.5081
41. −2sin(33∘)sin(11∘), −0.2078
43. 12(cos(99∘)−cos(71∘)), −0.2410
45. It is an identity.
47. It is not an identity, but 2cos3x is.
49. tan(3t)
51. 2cos(2x)
53. −sin(14x)
55. Start with cosx+cosy. Make a substitution and let x=α+β and let y=α−β, so cosx+cosy becomes
cos(α+β)+cos(α−β)=cosαcosβ−sinαsinβ+cosαcosβ+sinαsinβ=2cosαcosβ
Since x=α+β and y=α−β, we can solve for α and β in terms of x and y and substitute in for 2cosαcosβ and get 2cos(x+y2)cos(x−y2).
57. cos(3x)+cosxcos(3x)−cosx=2cos(2x)cosx−2sin(2x)sinx=−cot(2x)cotx
59. cos(2y)−cos(4y)sin(2y)+sin(4y)=−2sin(3y)sin(−y)2sin(3y)cosy=2sin(3y)sin(y)2sin(3y)cosy=tany
61. cosx−cos(3x)=−2sin(2x)sin(−x)=2(2sinxcosx)sinx=4sin2xcosx
63. tan(π4−t)=tan(π4)−tant1+tan(π4)tan(t)=1−tant1+tant
Candela Citations
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution