Learning Outcomes
- Use Newton’s Law of Cooling.
- Use a logistic growth model.
Bounded Exponential Growth and Decay
Using Newton’s Law of Cooling
Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of the generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for temperature as a function of time as an object’s temperature is equalized with the ambient temperature.
The formula is derived as follows:
[latex]\begin{array}{l}T\left(t\right)=A{b}^{ct}+{T}_{s}\hfill & \hfill \\ T\left(t\right)=A{e}^{\mathrm{ln}\left({b}^{ct}\right)}+{T}_{s}\hfill & \text{Properties of logarithms}.\hfill \\ T\left(t\right)=A{e}^{ct\mathrm{ln}b}+{T}_{s}\hfill & \text{Properties of logarithms}.\hfill \\ T\left(t\right)=A{e}^{kt}+{T}_{s}\hfill & \text{Rename the constant }c \mathrm{ln} b,\text{ calling it }k.\hfill \end{array}[/latex]
A General Note: Newton’s Law of Cooling
The temperature of an object, T, in surrounding air with temperature [latex]{T}_{s}[/latex] will behave according to the formula
[latex]T\left(t\right)=A{e}^{kt}+{T}_{s}[/latex]
where
- t is time
- A is the difference between the initial temperature of the object and the surroundings
- k is a constant, the continuous rate of cooling of the object
How To: Given a set of conditions, apply Newton’s Law of Cooling
- Set [latex]{T}_{s}[/latex] equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
- Substitute the given values into the continuous growth formula [latex]T\left(t\right)=A{e}^{k}{}^{t}+{T}_{s}[/latex] to find the parameters A and k.
- Substitute in the desired time to find the temperature or the desired temperature to find the time.
Example: Using Newton’s Law of Cooling
A cheesecake is taken out of the oven with an ideal internal temperature of [latex]165^\circ\text{F}[/latex] and is placed into a [latex]35^\circ\text{F}[/latex] refrigerator. After 10 minutes, the cheesecake has cooled to [latex]150^\circ\text{F}[/latex]. If we must wait until the cheesecake has cooled to [latex]70^\circ\text{F}[/latex] before we eat it, how long will we have to wait?
Try It
A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60 degrees?
Logistic Models
Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to fall apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double the number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines or one-half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time. Eventually an exponential model must begin to approach some limiting value and then the growth is forced to slow. For this reason, it is often better to use a model with an upper bound instead of an exponential growth model although the exponential growth model is still useful over a short term before approaching the limiting value.
The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output approaches the model’s upper bound called the carrying capacity. For constants a, b, and c, the logistic growth of a population over time x is represented by the model
[latex]f\left(x\right)=\frac{c}{1+a{e}^{-bx}}[/latex]
The graph below shows how the growth rate changes over time. The graph increases from left to right, but the growth rate only increases until it reaches its point of maximum growth rate at which the rate of increase decreases.
A General Note: Logistic Growth
The logistic growth model is
[latex]f\left(x\right)=\frac{c}{1+a{e}^{-bx}}[/latex]
where
- [latex]\frac{c}{1+a}[/latex] is the initial value
- c is the carrying capacity or limiting value
- b is a constant determined by the rate of growth.
Example: Using the Logistic-Growth Model
An influenza epidemic spreads through a population rapidly at a rate that depends on two factors. The more people who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more rapidly it spreads. These two factors make the logistic model good for studying the spread of communicable diseases. And, clearly, there is a maximum value for the number of people infected: the entire population.
For example, at time t = 0 there is one person in a community of 1,000 people who has the flu. So, in that community, at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the logistic growth constant is b = 0.6030. Estimate the number of people in this community who will have had this flu after ten days. Predict how many people in this community will have had this flu after a long period of time has passed.
Try It
Using the model in the previous example, estimate the number of cases of flu on day 15.
Key Equations
Newton’s Law of Cooling | [latex]T(t)={A}_{0}{e}^{kt}+T_s[/latex], where [latex]T_s[/latex] is the ambient temperature, [latex]A=T(0)-T_s[/latex], and [latex]k[/latex] is the continuous rate of cooling. |
Logistic Growth Model | [latex]f(x)=\frac{c}{1+ae^{-bx}}[/latex], where [latex]\frac{c}{1+a}[/latex] is the initial value, c is the carrying capacity, or limiting value, and b is a constant determined by the rate of growth |
Key Concepts
- We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired temperature or to find what temperature an object will be after a given time.
- We can use logistic growth functions to model real-world situations where the rate of growth changes over time, such as population growth, spread of disease, and spread of rumors.
Glossary
- carrying capacity
- in a logistic model, the limiting value of the output
- logistic growth model
- a function of the form [latex]f\left(x\right)=\frac{c}{1+a{e}^{-bx}}[/latex] where [latex]\frac{c}{1+a}[/latex] is the initial value, c is the carrying capacity, or limiting value, and b is a constant determined by the rate of growth
Newton’s Law of Cooling
the scientific formula for temperature as a function of time as an object’s temperature is equalized with the ambient temperature