Learning Objectives
- Apply the product rule
- Apply the quotient rule
- Apply the power rule
- Apply the change of base rule
- Explain natural logarithms and common logarithms
SInce logarithms are exponents, they have a list of rules that go along with them.
The Identity Property for Logarithms
The definition of logarithm states that logba=xlogba=x is equivalent to a=bxa=bx. Consequently, since logbx=logbxlogbx=logbx then x=blogbxx=blogbx.
Identity property for Logarithms
For all real numbers b>0,b≠1b>0,b≠1,
blogbx=xblogbx=x
Example 1
Evaluate:
- 2log252log25
- 3log373log37
- 7log727log72
Solution
SInce blogbx=x,
- 2log25=5
- 3log37=7
- 7log72=2
Try It 1
Evaluate:
- 2log23
- 9log97
- 2log25
The Product Property for Logarithms
The product Property for logarithms mimics the product Property for exponents. SInce logarithms are exponents the exponential property am⋅an=am+n gets translated into logarithmic form. The multiplication of terms inside the argument of a logarithm is equal to the addition of logarithms of each term.
The Product Property for logarithms
For any positive real numbers b,M,N, and b≠1,
logbMN=logbM+logbN
Example 2
Expand the logarithm log33x.
Solution
The argument consists of the product of 3 and x, so applying the product property:
log33x=log33+log3x
We can then evaluate log33=1, to get:
log33+log3x=1+log3x
Example 3
Expand the logarithm log5[5s(t−3)].
Solution
The argument consists of the product of 5⋅s⋅(t−3), so we can expand the product property:
log5[5s(t−3)]=log55+log5s+log5(t−3)=1+log5s+log5(t−3)
Try It 2
Expand the logarithm log416x.
Try It 3
Expand the logarithm log2[8(s+2)(t−5)].
The Quotient Property for Logarithms
The quotient property for logarithms mimics the quotient property for exponents. SInce logarithms are exponents the exponential property aman=am−n gets translated into logarithmic form. The division of terms inside the argument of a logarithm is equal to the subtraction of logarithms of each term.
The quotient Property for logarithms
For any positive real numbers b,M,N, and b≠1,
logbMN=logbM−logbN
Example 4
Expand the logarithm log10x10.
Solution
The argument of the log consists of a quotient of the two terms x and 10, so we apply the quotient property:
log10x10=log10x−log1010=log10x−1
Try It 4
Expand the logarithm log4x4.
The Power Property for Logarithms
The power Property comes from the product rule of exponents. logbMr=logb(M⋅M⋅M...M⋅M)=logbM+logbM+logbM+...+logbM=rlogbM. If the argument of a logarithm is a single term with an exponent, we may pull the exponent in front of the logarithm.
The Power Property for Logarithms
For any positive real numbers b,M,N, and b≠1,
logbMr=r×logbM
Example 5
Expand the logarithm log2x4.
Solution
The argument of the logarithm is x4, a single term raised to a power, so we can apply the power property of logarithms:
log2x4=4log2x
Try It 5
Expand the logarithm log7x−2.
Expanding a Logarithm
The properties we have learned so far to expand a logarithm can be used in conjunction with one another.
Example 6
Expand the logarithm log22y5.
Solution
log22y5=log2(2y)−log25Quotient Property=log22+log2y−log25Product Property=1+log2y−log25IdentityProperty
Example 7
Expand the logarithm log416y35.
Solution
log416y35=log4(16y3)−log45Quotient Property=log416+log4y3−log45Product Property=log442+3log4y−log45Power Property=2+3log4y−log45Identity Property
Try It 6
Expand the logarithm log10100x3y5.
Try It 7
Expand the logarithm log232xy5.
Combining Logarithms
The properties for exponents we applied to expand a logarithm can be also be used (in reverse) to combine logarithms into a single logarithm. The assumption is that these logarithms have the same base.
Example 8
Combine log42+log410−log45 into a single logarithm.
Solution
log42+log410−log45=log4(2×10)−log45Product Property=log4205Quotient Property=log44Simplify=1
Example 9
Combine 2log2(x−2)−log2(x2−x−2) into a single logarithm.
Solution
2log2(x−2)−log2(x2−x−2)=log2(x−2)2−log2(x2−x−2)Power Property=log2(x−2)2x2−x−2Quotient Property=log2(x−2)2(x−2)(x+1)Factor=log2(x−2)(x+1)Simplify
Try It 8
Combine log23+4log2x+5log2y into a single logarithm.
Try It 9
Combine 4log2x−log27−5log2y into a single logarithm.
Try It 10
Combine 2log2(x−1)−log2(x2−1) into a single logarithm.
Common and Natural Logarithms
If the base of a logarithm is 10, the logarithm is call a common logarithm. This is because the common number system we use in our daily life is base-10. If the base of a logarithm is the number e (also known as Euler’s number), the logarithm is call a natural logarithm. This is because the number e is an irrational number equal to 2.718281828459…; the ellipses … mean that the decimal never ends and never repeats. The number e was first discovered in 1683 by the Swiss mathematician Jacob Bernoulli but was first evaluated by Leonhard Euler in 1737. Consequently, it is often referred to as Euler’s number. The natural logarithm is one of the most useful functions in mathematics, with applications throughout the physical and biological sciences.
Most scientific calculators have both log10, which is written as log (the base is so common it is omitted) and loge which is written ln (ln refers to logarithm naturale).
Notice that behind the log button is 10x, and behind the ln button is ex. These are the inverse functions.
Example 10
Use a calculator to evaluate the logarithms exactly or to 5 decimal places:
- log4
- log100
- ln4
- lne
Solution
- log4=0.60206
- log100=2
- ln4=1.38629
- lne=1
All of the properties of logarithms apply to common and natural logarithms.
Properties of Logarithms
Property | Base 10 | Base e |
Identity | log10=1 | lne=1 |
Product | logMN=logM+logN | lnMN=lnM+lnN |
Quotient | logMN=logM−logN | lnMN=lnM−lnN |
Power | logMr=rlogM | lnMr=rlnM |
Example 11
Evaluate lne2.
Solution
lne2=2lne=2×1=2
Try It 11
Evaluate log10,000.
Example 12
Simplify to a single logarithm: log(x2+4x+3)−2log(x+1)
Solution
log(x2+4x+3)−2log(x+1)=log(x+3)(x+1)−log(x+1)2Factor. Power property.=log(x+3)(x+1)(x+1)2Quotient property=logx+3x+1Simplify
Try It 12
Simplify to a single logarithm: 4lnx−2ln(x+1)+ln(x2−1)
The Change of Base Rule
Calculators are a great way to evaluate logarithms with base 10 or e. But what if we want to evaluate a logarithm with a different base? The good news is that we can change the base of any logarithm to any base we wish to use, most importantly base 10 and e.
The Change of Base Formula
For any positive real number m with m≠1,
logba=logmalogmb
SInce we usually have access to a calculator with logarithms of base 10 and e, it is important to be able to change the base of any logarithm to 10 or e. The change of base formula can be used:
logba=logalogb and logba=lnalnb
Example 13
Evaluate log25 to 5 decimal places.
Solution
Converting to common logs:
log25=log5log2=2.32193
or
log25=ln5ln2=2.32193
Notice that when using a calculator we never write the answer to the numerator and denominator of a fraction, then divide those two rounded numbers. This is because rounding each number than dividing brings in rounding error. Instead we complete the full calculation in the calculator, then round at the very end.
Try It 13
Evaluate log932 to 5 decimal places.
Composition with the Inverse Function (Application of the Properties of Logarithms)
In chapter 3.3.2, we learned that f(x) and g(x) are inverses of each other if f(g(x))=x and g(f(x))=x. We may use this property to determine if the inverse function we found is correct or not. For example, suppose someone found that the inverse function of f(x)=log2(x+3)−5 is f−1(x)=2x+5−3. We may justify this answer by checking if f(f−1(x))=x and f−1(f(x))=x. If either one is false, then the inverse function is incorrect.
f(f−1(x))=log2((2x+5−3)+3)−5=log22x+5−5=(x+5)log22−5=(x+5)×1−5=x+5−5=x
f−1(f(x))=2(log2(x+3)−5)+5−3=2(log2(x+3)−3=(x+3)−3=x
Therefore, the inverse function f−1(x)=2x+5−3 is correct because f(f−1(x))=x and f−1(f(x))=x.
Candela Citations
- Properties of Logarithm. Authored by: Leo Chang and Hazel McKenna. Provided by: Utah Valley University. License: CC BY: Attribution
- Examples and Try Its: hjm200; hjm201; hjm202; hjm325; hjm751; hjm869; hjm376; hjm882; hjm920; hjm492; hjm407; hjm311; hjm150. Authored by: Hazel McKenna. Provided by: Utah Valley University. License: CC BY: Attribution