Learning Outcomes
- Simplify Expressions Using the Quotient Property of Exponents
- Simplify exponential expressions containing negative exponents
- Simplify exponential expressions containing exponents of 0 and 1
Key words
- Quotient: the result of dividing
- Exponent: the power that a base number is raised to
Simplifying Expressions Using the Quotient Property of Exponents
So far we have developed the properties of exponents for multiplication. We summarize these properties here.
Summary of Exponent Properties for Multiplication
If aa and bb are real numbers and mm and nn are whole numbers, then,
Product Property: am⋅an=am+nam⋅an=am+n
Power Property: (am)n=am⋅n(am)n=am⋅n
Product to a Power: (ab)n=anbn(ab)n=anbn
Now we will look at the exponent properties for division. We previously learned that fractions may be simplified by dividing out common factors from the numerator and denominator using the Equivalent Fractions Property.
Equivalent Fractions Property
If a,b,ca,b,c are whole numbers where b≠0,c≠0b≠0,c≠0, then ab=a⋅cb⋅c and a⋅cb⋅c=abab=a⋅cb⋅c and a⋅cb⋅c=ab.
If the numerator and denominator of a fraction are multiplied or divided by the same non-zero number, the resulting fraction is equivalent to the original fraction.
As before, we’ll try to discover a property by looking at some examples.
Let’s look at dividing terms containing exponential expressions. What happens if we divide two numbers in exponential form with the same base? Consider the following expression.
45424542
We can rewrite the expression as: 4⋅4⋅4⋅4⋅44⋅44⋅4⋅4⋅4⋅44⋅4. Then we can cancel the common factors of 44 in the numerator and denominator: 4⋅4⋅4⋅4⋅44⋅44⋅4⋅4⋅4⋅44⋅4. This leaves 4343 on the numerator and 11 on the denominator, which simplifies to 4343 using exponential notation. Notice that the exponent, 33, is the difference between the two exponents in the original expression, 55 and 22.
4542=45−2=434542=45−2=43.
As another example, consider 25222522:
2522=2⋅2⋅2⋅2⋅22⋅2=2⋅2⋅2⋅1=232522=2⋅2⋅2⋅2⋅22⋅2=2⋅2⋅2⋅1=23
If we subtract the exponents and keep the common base we get 2522=25−2=232522=25−2=23. The same answer we got when we expanded the exponents into multiplication.
Notice that in each case the bases were the same and we subtracted the exponents. So, to divide two exponential terms with the same base, subtract the exponents.
Quotient Property of Exponents
If aa is a real number, a≠0a≠0, and m,nm,n are whole numbers, then aman=am−n,m>naman=am−n,m>n.
To divide two exponential terms with the same base, keep the base and subtract the exponents.
Examples
Simplify:
1. 78737873
=78−3=75=78−3=75
2. (−5)9(−5)4(−5)9(−5)4
=(−5)9−4=(−5)5=(−5)9−4=(−5)5
Try It
Simplify:
1. 45434543
2. (−8)7(−8)5(−8)7(−8)5
One as an Exponent
What does 3131 or (−5)1(−5)1 equal?
Consider 24232423. If we use the quotient property, 2423=212423=21.
Alternatively, we could expand the exponential terms: 2423=2⋅2⋅2⋅22⋅2⋅22423=2⋅2⋅2⋅22⋅2⋅2. Then by cancelling out common factors, we get 2⋅2⋅2⋅22⋅2⋅2=22⋅2⋅2⋅22⋅2⋅2=2.
This means that 21=221=2, and leads us to the property that, for any integer a, a1=aa, a1=a.
Examples
Simplify:
1. 74737473
=74−3=71=7=74−3=71=7
2. (−5)5(−5)4(−5)5(−5)4
=(−5)5−4=(−5)1=−5=(−5)5−4=(−5)1=−5
Zero as an Exponent
A special case of the Quotient Property is when the exponents of the numerator and denominator are equal, such as 54545454. From earlier work with fractions, we know that,
22=1717=−43−43=122=1717=−43−43=1
In words, a non-zero integer divided by itself is 11. Remember that 0000 is undefined.
We also know that a, a1=aa, a1=a, for any non-zero integer aa.
Now consider simplifying the term 8888 in two different ways.
We know that 88=188=1 by division.
We also know that 88=8181=81−1=8088=8181=81−1=80 using the Quotient Property..
This means that 80=180=1.
Exponents of 0 or 1
Any integer raised to a power of 11 is the number itself.
n1=nn1=n
Any non-zero number integer raised to a power of 00 is equal to 11.
n0=1n0=1
The quantity 0000 is undefined.
example
Simplify:
1. 120120
2. (−7)0(−7)0
try it
Negative Exponents
Now let’s see what happens when the denominator has a larger exponent than the numerator, so that when we subtract the exponents, we get a negative integer:
2223=2⋅22⋅2⋅2=122223=2⋅22⋅2⋅2=12
When we subtract the exponents and keep the common base we get:
2223=22−3=2−12223=22−3=2−1
This means that 2−1=122−1=12.
Let’s consider one more example:
7275=7⋅77⋅7⋅7⋅7⋅7=1737275=7⋅77⋅7⋅7⋅7⋅7=173.
On the other hand, subtracting the exponents and keeping the common base gives us 7275=72−5=7−37275=72−5=7−3.
So, 173=7−3173=7−3.
This leads us to the meaning of negative exponents.
NEGATIVE Exponents
If aa is a real number, a≠0a≠0, and nn is a whole numbers, then a−n=1ana−n=1an.
A negative exponent is equivalent to a positive exponent on the reciprocal of the number.
When the exponent in the denominator is larger than the exponent in the numerator, the exponent of the quotient will be negative. If the result gives us a negative exponent, the negative exponent tells us to re-write the expression by taking the reciprocal of the base and then changing the sign of the exponent. We rewrite it by using the definition of negative exponents, a−n=1ana−n=1an. Any expression that has negative exponents is not considered to be in simplest form, so we will use the definition of a negative exponent and other properties of exponents to write an expression with only positive exponents.
Example
Evaluate the expression 4−34−3.
example
Simplify:
1. 4−24−2
2. (12)−3(12)−3
Solution
1. | |
4−24−2 | |
Use the definition of a negative exponent, a−n=1ana−n=1an. | 142142 |
Simplify. | 116116 |
2. | |
(12)−3(12)−3 | |
Take the reciprocal and turn the exponent positive. | (21)3(21)3 |
Simplify. | 23=823=8 |
try it
In the following video you will see examples of simplifying expressions with negative exponents.
We can now update the quotient property of exponents so that it includes negative and zero exponents by removing the condition that m>nm>n.
Quotient Property of Exponents
If aa is a real number, a≠0a≠0, and m,nm,n are integers, then aman=am−naman=am−n.
example
Simplify:
29222922
Solution
To simplify an expression with a quotient, we need to first compare the exponents in the numerator and denominator.
29222922 | |
Use the quotient property with ,aman=am−n,aman=am−n. | 29−229−2 |
Simplify. | 2727 |
Notice that when the larger exponent is in the numerator, we are left with factors in the numerator.
Try It
Simplify:
1. (6)9(6)7(6)9(6)7
2. (−3)7(−3)4(−3)7(−3)4
example
Simplify:
33353335
Solution
Both bases are 33 so we can subtract the exponents:
3335=33−5=3−2=132=193335=33−5=3−2=132=19
Notice that when the larger exponent is in the denominator, we are left with factors in the denominator and 11 in the numerator.
Try It
Simplify the terms:
1. (−5)4(−5)7(−5)4(−5)7
2. 252−3252−3
3. 7−47−67−47−6
4. (−3)−6(−3)−4(−3)−6(−3)−4
Simplifying Fractions Raised to a Power
Now we will look at an example that will lead us to the Quotient to a Power Property.
Let’s look at what happens if you raise a fraction to a power. Remember that a fraction bar means divide. Suppose we have 5454 and raise it to the power 33.
(54)3=(54)(54)(54)=5⋅5⋅54⋅4⋅4=5343(54)3=(54)(54)(54)=5⋅5⋅54⋅4⋅4=5343
Raising the fraction to the power of 33 can also be written as the numerator 55 to the power of 33, and the denominator 44 to the power of 33.
Notice that the exponent applies to both the numerator and the denominator. This leads to the Quotient to a Power Property for Exponents.
Quotient to a Power Property of Exponents
If aa and bb are real numbers, b≠0b≠0, and nn is an integer number, then (ab)m=ambm(ab)m=ambm.
To raise a fraction to a power, raise the numerator and denominator to that power.
example
Simplify:
1. (58)2(58)2
2. (23)4(23)4
try it
Let’s looks at some examples of how this rule applies under different circumstances.
Example
Simplify (13)−2.
Example
Simplify.14−2 Write your answer using positive exponents.
Try It
Simplify:
1. (52)−2
2. −35−2