Storage

Learning Objectives

  • Describe the three stages of memory storage
  • Distinguish between implicit and explicit memory and semantic and episodic memory

Once the information has been encoded, we somehow have to retain it. Our brains take the encoded information and place it in storage. Storage is the creation of a permanent record of information.

In order for a memory to go into storage (i.e., long-term memory), it has to pass through three distinct stages: Sensory Memory, Short-Term Memory, and finally Long-Term Memory. These stages were first proposed by Richard Atkinson and Richard Shiffrin (1968). Their model of human memory (Figure 1), called Atkinson and Shiffrin’s model, is based on the belief that we process memories in the same way that a computer processes information.

Atkinson-Shiffrin model of memory. Sensory input flows to Stage 1 “Sensory Memory”. Information not transferred is lost. Sensory memory flows to Stage 2 “Short-term memory (STM)” where rehearsal takes place. Information not transferred is lost. Short-term memory flows to Stage 3 “Long-term memory (LTM) which also flows back to Stage 2 “Short-term memory”.

Figure 1. According to the Atkinson-Shiffrin model of memory, information passes through three distinct stages in order for it to be stored in long-term memory.

Atkinson and Shiffrin’s model is not the only model of memory. Others, such as Baddeley and Hitch (1974), have proposed a model where short-term memory itself has different forms. In this model, storing memories in short-term memory is like opening different files on a computer and adding information. The type of short-term memory (or computer file) depends on the type of information received. There are memories in visual-spatial form, as well as memories of spoken or written material, and they are stored in three short-term systems: a visuospatial sketchpad, an episodic buffer, and a phonological loop. According to Baddeley and Hitch, a central executive part of memory supervises or controls the flow of information to and from the three short-term systems.

Sensory Memory

In the Atkinson-Shiffrin model, stimuli from the environment are processed first in sensory memory: storage of brief sensory events, such as sights, sounds, and tastes. It is very brief storage—up to a couple of seconds. We are constantly bombarded with sensory information. We cannot absorb all of it, or even most of it. And most of it has no impact on our lives. For example, what was your professor wearing the last class period? As long as the professor was dressed appropriately, it does not really matter what they were wearing. Sensory information about sights, sounds, smells, and even textures, which we do not view as valuable information, we discard. If we view something as valuable, the information will move into our short-term memory system.

Short-Term Memory

Short-term memory (STM) is a temporary storage system that processes incoming sensory memory. The terms short-term and working memory are sometimes used interchangeably, but they are not exactly the same. Short-term memory is more accurately described as a component of working memory. Short-term memory takes information from sensory memory and sometimes connects that memory to something already in long-term memory. Short-term memory storage lasts 15 to 30 seconds. Think of it as the information you have displayed on your computer screen, such as a document, spreadsheet, or website. Then, information in STM goes to long-term memory (you save it to your hard drive), or it is discarded (you delete a document or close a web browser).

Rehearsal moves information from short-term memory to long-term memory. Active rehearsal is a way of attending to information to move it from short-term to long-term memory. During active rehearsal, you repeat (practice) the information to be remembered. If you repeat it enough, it may be moved into long-term memory. For example, this type of active rehearsal is the way many children learn their ABCs by singing the alphabet song. Alternatively, elaborative rehearsal is the act of linking new information you are trying to learn to existing information that you already know. For example, if you meet someone at a party and your phone is dead but you want to remember his phone number, which starts with area code 203, you might remember that your uncle Abdul lives in Connecticut and has a 203 area code. This way, when you try to remember the phone number of your new prospective friend, you will easily remember the area code. Craik and Lockhart (1972) proposed the levels of processing hypothesis that states the deeper you think about something, the better you remember it.

You may find yourself asking, “How much information can our memory handle at once?” To explore the capacity and duration of your short-term memory, have a partner read the strings of random numbers (Figure 8.5) out loud to you, beginning each string by saying, “Ready?” and ending each by saying, “Recall,” at which point you should try to write down the string of numbers from memory.

A series of numbers includes two rows, with six numbers in each row. From left to right, the numbers increase from four digits to five, six, seven, eight, and nine digits. The first row includes “9754,” “68259,” “913825,” “5316842,” “86951372,” and “719384273,” and the second row includes “6419,” “67148,” “648327,” “5963827,” “51739826,” and “163875942.”

Figure 2. Work through this series of numbers using the recall exercise explained above to determine the longest string of digits that you can store.

Note the longest string at which you got the series correct. For most people, the capacity will probably be close to 7 plus or minus 2. In 1956, George Miller reviewed most of the research on the capacity of short-term memory and found that people can retain between 5 and 9 items, so he reported the capacity of short-term memory was the “magic number” 7 plus or minus 2. However, more contemporary research has found working memory capacity is 4 plus or minus 1 (Cowan, 2010). Generally, recall is somewhat better for random numbers than for random letters (Jacobs, 1887) and also often slightly better for information we hear (acoustic encoding) rather than information we see (visual encoding) (Anderson, 1969).

Memory trace decay and interference are two factors that affect short-term memory retention. Peterson and Peterson (1959) investigated short-term memory using the three letter sequences called trigrams (e.g., CLS) that had to be recalled after various time intervals between 3 and 18 seconds. Participants remembered about 80% of the trigrams after a 3-second delay, but only 10% after a delay of 18 seconds, which caused them to conclude that short-term memory decayed in 18 seconds. During decay, the memory trace becomes less activated over time, and the information is forgotten. However, Keppel and Underwood (1962) examined only the first trials of the trigram task and found that proactive interference also affected short-term memory retention. During proactive interference, previously learned information interferes with the ability to learn new information. Both memory trace decay and proactive interference affect short-term memory. Once the information reaches long-term memory, it has to be consolidated at both the synaptic level, which takes a few hours, and into the memory system, which can take weeks or longer.

Long-term Memory

Long-term memory (LTM) is the continuous storage of information. Unlike short-term memory, long-term memory storage capacity is believed to be unlimited. It encompasses all the things you can remember that happened more than just a few minutes ago. One cannot really consider long-term memory without thinking about the way it is organized. Really quickly, what is the first word that comes to mind when you hear “peanut butter”? Did you think of jelly? If you did, you probably have associated peanut butter and jelly in your mind. It is generally accepted that memories are organized in semantic (or associative) networks (Collins & Loftus, 1975). A semantic network consists of concepts, and as you may recall from what you’ve learned about memory, concepts are categories or groupings of linguistic information, images, ideas, or memories, such as life experiences. Although individual experiences and expertise can affect concept arrangement, concepts are believed to be arranged hierarchically in the mind (Anderson & Reder, 1999; Johnson & Mervis, 1997, 1998; Palmer, Jones, Hennessy, Unze, & Pick, 1989; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Tanaka & Taylor, 1991). Related concepts are linked, and the strength of the link depends on how often two concepts have been associated.

Semantic networks differ depending on personal experiences. Importantly for memory, activating any part of a semantic network also activates the concepts linked to that part to a lesser degree. The process is known as spreading activation (Collins & Loftus, 1975). If one part of a network is activated, it is easier to access the associated concepts because they are already partially activated. When you remember or recall something, you activate a concept, and the related concepts are more easily remembered because they are partially activated. However, the activations do not spread in just one direction. When you remember something, you usually have several routes to get the information you are trying to access, and the more links you have to a concept, the better your chances of remembering.

There are two types of long-term memory: explicit and implicit (Figure 8.6). Understanding the difference between explicit memory and implicit memory is important because aging, particular types of brain trauma, and certain disorders can impact explicit and implicit memory in different ways. Explicit memories are those we consciously try to remember, recall, and report. For example, if you are studying for your chemistry exam, the material you are learning will be part of your explicit memory. In keeping with the computer analogy, some information in your long-term memory would be like the information you have saved on the hard drive. It is not there on your desktop (your short-term memory), but most of the time you can pull up this information when you want it. Not all long-term memories are strong memories, and some memories can only be recalled using prompts. For example, you might easily recall a fact, such as the capital of the United States, but you might struggle to recall the name of the restaurant at which you had dinner when you visited a nearby city last summer. A prompt, such as that the restaurant was named after its owner, might help you recall the name of the restaurant. Explicit memory is sometimes referred to as declarative memory, because it can be put into words. Explicit memory is divided into episodic memory and semantic memory.

Try It

A diagram consists of three rows of boxes. The box in the top row is labeled “long-term memory;” a line from the box separates into two lines leading to two boxes on the second row, labeled “explicit memory” and “implicit memory.” From each of the second row boxes, lines split and lead to additional boxes. From the “explicit memory” box are two boxes labeled “episodic (events and experiences)” and “semantic (concepts and facts).” From the “implicit memory” box are three boxes labeled “procedural (How to do things),” “Priming (stimulus exposure affects responses to a later stimulus),” and “emotional conditioning (Classically conditioned emotional responses).”

Figure 3. There are two components of long-term memory: explicit and implicit. Explicit memory includes episodic and semantic memory. Implicit memory includes procedural memory and things learned through conditioning.

Episodic memory is information about events we have personally experienced (i.e., an episode). For instance, the memory of your last birthday is an episodic memory. Usually, episodic memory is reported as a story. The concept of episodic memory was first proposed about in the 1970s (Tulving, 1972). Since then, Tulving and others have reformulated the theory, and currently scientists believe that episodic memory is memory about happenings in particular places at particular times—the what, where, and when of an event (Tulving, 2002). It involves recollection of visual imagery as well as the feeling of familiarity (Hassabis & Maguire, 2007). Semantic memory is knowledge about words, concepts, and language-based knowledge and facts. Semantic memory is typically reported as facts. Semantic means having to do with language and knowledge about language. For example, answers to the following questions like “what is the definition of psychology” and “who was the first African American president of the United States” are stored in your semantic memory.

Implicit memories are long-term memories that are not part of our consciousness. Although implicit memories are learned outside of our awareness and cannot be consciously recalled, implicit memory is demonstrated in the performance of some task (Roediger, 1990; Schacter, 1987). Implicit memory has been studied with cognitive demand tasks, such as performance on artificial grammars (Reber, 1976), word memory (Jacoby, 1983; Jacoby & Witherspoon, 1982), and learning unspoken and unwritten contingencies and rules (Greenspoon, 1955; Giddan & Eriksen, 1959; Krieckhaus & Eriksen, 1960). Returning to the computer metaphor, implicit memories are like a program running in the background, and you are not aware of their influence. Implicit memories can influence observable behaviors as well as cognitive tasks. In either case, you usually cannot put the memory into words that adequately describe the task. There are several types of implicit memories, including procedural, priming, and emotional conditioning.

Implicit procedural memory is often studied using observable behaviors (Adams, 1957; Lacey & Smith, 1954; Lazarus & McCleary, 1951). Implicit procedural memory stores information about the way to do something, and it is the memory for skilled actions, such as brushing your teeth, riding a bicycle, or driving a car. You were probably not that good at riding a bicycle or driving a car the first time you tried, but you were much better after doing those things for a year. Your improved bicycle riding was due to learning balancing abilities. You likely thought about staying upright in the beginning, but now you just do it. Moreover, you probably are good at staying balanced, but cannot tell someone the exact way you do it. Similarly, when you first learned to drive, you probably thought about a lot of things that you just do now without much thought. When you first learned to do these tasks, someone may have told you how to do them, but everything you learned since those instructions that you cannot readily explain to someone else as the way to do it is implicit memory.

Everyday Connection: Can You Remember Everything You Ever Did or Said?

Episodic memories are also called autobiographical memories. Let’s quickly test your autobiographical memory. What were you wearing exactly five years ago today? What did you eat for lunch on April 10, 2019? You probably find it difficult, if not impossible, to answer these questions. Can you remember every event you have experienced over the course of your life—meals, conversations, clothing choices, weather conditions, and so on? Most likely none of us could even come close to answering these questions; however, American actress Marilu Henner, best known for the television show Taxi, can remember. She has an amazing and highly superior autobiographical memory (Figure 7).

A photograph shows Marilu Henner.

Figure 7. Marilu Henner’s super autobiographical memory is known as hyperthymesia. (credit: Mark Richardson)

Very few people can recall events in this way; right now, fewer than 20 have been identified as having this ability, and only a few have been studied (Parker, Cahill & McGaugh 2006). And although hyperthymesia normally appears in adolescence, two children in the United States appear to have memories from well before their tenth birthdays.

Watch this video about superior autobiographical memory from the television news show 60 Minutes to learn more.

Watch It

In this video, Hank Green explains several research studies that helped us better understand implicit memories.

You can view the transcript for “Why Is Riding a Bike “Just Like Riding a Bike?”” here (opens in new window).

Try It

Think It Over

  • Describe something you have learned that is now in your procedural memory. Discuss how you learned this information.
  • Describe something you learned in high school that is now in your semantic memory.

Glossary

Atkinson-Shiffrin model (A-S): memory model that states we process information through three systems: sensory memory, short-term memory, and long-term memory
automatic processing: encoding of informational details like time, space, frequency, and the meaning of words
declarative memory: type of long-term memory of facts and events we personally experience
effortful processing: encoding of information that takes effort and attention
episodic memory: type of declarative memory that contains information about events we have personally experienced, also known as autobiographical memory
explicit memory: memories we consciously try to remember and recall
implicit memory: memories that are not part of our consciousness
memory: system or process that stores what we learn for future use
memory consolidation: active rehearsal to move information from short-term memory into long-term memory
procedural memory: type of long-term memory for making skilled actions, such as how to brush your teeth, how to drive a car, and how to swim
retrieval: act of getting information out of long-term memory storage and back into conscious awareness
self-reference effect: tendency for an individual to have better memory for information that relates to oneself in comparison to material that has less personal relevance
semantic encoding: input of words and their meaning
semantic memory: type of declarative memory about words, concepts, and language-based knowledge and facts
sensory memory: storage of brief sensory events, such as sights, sounds, and tastes
short-term memory (STM): (also, working memory) holds about seven bits of information before it is forgotten or stored, as well as information that has been retrieved and is being used
storage: creation of a permanent record of information