### Learning Outcomes

- Simplify Nth roots.
- Write radicals as rational exponents.

## Using Rational Roots

Although square roots are the most common rational roots, we can also find cube roots, 4th roots, 5th roots, and more. Just as the square root function is the inverse of the squaring function, these roots are the inverse of their respective power functions. These functions can be useful when we need to determine the number that, when raised to a certain power, gives a certain number.

Suppose we know that [latex]{a}^{3}=8[/latex]. We want to find what number raised to the 3rd power is equal to 8. Since [latex]{2}^{3}=8[/latex], we say that 2 is the cube root of 8.

The *n*th root of [latex]a[/latex] is a number that, when raised to the *n*th power, gives [latex]a[/latex]. For example, [latex]-3[/latex] is the 5th root of [latex]-243[/latex] because [latex]{\left(-3\right)}^{5}=-243[/latex]. If [latex]a[/latex] is a real number with at least one *n*th root, then the **principal nth root** of [latex]a[/latex] is the number with the same sign as [latex]a[/latex] that, when raised to the

*n*th power, equals [latex]a[/latex].

The principal *n*th root of [latex]a[/latex] is written as [latex]\sqrt[n]{a}[/latex], where [latex]n[/latex] is a positive integer greater than or equal to 2. In the radical expression, [latex]n[/latex] is called the **index** of the radical.

### A General Note: Principal *n*th Root

If [latex]a[/latex] is a real number with at least one *n*th root, then the **principal nth root** of [latex]a[/latex], written as [latex]\sqrt[n]{a}[/latex], is the number with the same sign as [latex]a[/latex] that, when raised to the

*n*th power, equals [latex]a[/latex]. The

**index**of the radical is [latex]n[/latex].

### Example: Simplifying *n*th Roots

Simplify each of the following:

- [latex]\sqrt[5]{-32}[/latex]
- [latex]\sqrt[4]{4}\cdot \sqrt[4]{1,024}[/latex]
- [latex]-\sqrt[3]{\dfrac{8{x}^{6}}{125}}[/latex]
- [latex]8\sqrt[4]{3}-\sqrt[4]{48}[/latex]

### Try It

Simplify.

- [latex]\sqrt[3]{-216}[/latex]
- [latex]\dfrac{3\sqrt[4]{80}}{\sqrt[4]{5}}[/latex]
- [latex]6\sqrt[3]{9,000}+7\sqrt[3]{576}[/latex]

## Using Rational Exponents

Radical expressions can also be written without using the radical symbol. We can use rational (fractional) exponents. The index must be a positive integer. If the index [latex]n[/latex] is even, then [latex]a[/latex] cannot be negative.

We can also have rational exponents with numerators other than 1. In these cases, the exponent must be a fraction in lowest terms. We raise the base to a power and take an *n*th root. The numerator tells us the power and the denominator tells us the root.

All of the properties of exponents that we learned for integer exponents also hold for rational exponents.

### Rational Exponents

Rational exponents are another way to express principal *n*th roots. The general form for converting between a radical expression with a radical symbol and one with a rational exponent is

### How To: Given an expression with a rational exponent, write the expression as a radical.

- Determine the power by looking at the numerator of the exponent.
- Determine the root by looking at the denominator of the exponent.
- Using the base as the radicand, raise the radicand to the power and use the root as the index.

### Example: Writing Rational Exponents as Radicals

Write [latex]{343}^{\frac{2}{3}}[/latex] as a radical. Simplify.

### Try It

Write [latex]{9}^{\frac{5}{2}}[/latex] as a radical. Simplify.

### Example: Writing Radicals as Rational Exponents

Write [latex]\dfrac{4}{\sqrt[7]{{a}^{2}}}[/latex] using a rational exponent.

### Try It

Write [latex]x\sqrt{{\left(5y\right)}^{9}}[/latex] using a rational exponent.

Watch this video to see more examples of how to write a radical with a fractional exponent.

### Example: Simplifying Rational Exponents

Simplify:

- [latex]5\left(2{x}^{\frac{3}{4}}\right)\left(3{x}^{\frac{1}{5}}\right)[/latex]
- [latex]{\left(\dfrac{16}{9}\right)}^{-\frac{1}{2}}[/latex]

### Try It

Simplify [latex]{\left(8x\right)}^{\frac{1}{3}}\left(14{x}^{\frac{6}{5}}\right)[/latex].