Learning Outcomes
- Rewrite logarithms with a different base using the change of base formula.
Using the Change-of-Base Formula for Logarithms
Most calculators can only evaluate common and natural logs. In order to evaluate logarithms with a base other than 10 or [latex]e[/latex], we use the change-of-base formula to rewrite the logarithm as the quotient of logarithms of any other base; when using a calculator, we would change them to common or natural logs.
To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.
Given any positive real numbers M, b, and n, where [latex]n\ne 1[/latex] and [latex]b\ne 1[/latex], we show
[latex]{\mathrm{log}}_{b}M\text{=}\frac{{\mathrm{log}}_{n}M}{{\mathrm{log}}_{n}b}[/latex]
Let [latex]y={\mathrm{log}}_{b}M[/latex]. Converting to exponential form, we obtain [latex]{b}^{y}=M[/latex]. It follows that:
[latex]\begin{array}{l}{\mathrm{log}}_{n}\left({b}^{y}\right)\hfill & ={\mathrm{log}}_{n}M\hfill & \text{Apply the one-to-one property}.\hfill \\ y{\mathrm{log}}_{n}b\hfill & ={\mathrm{log}}_{n}M \hfill & \text{Apply the power rule for logarithms}.\hfill \\ y\hfill & =\frac{{\mathrm{log}}_{n}M}{{\mathrm{log}}_{n}b}\hfill & \text{Isolate }y.\hfill \\ {\mathrm{log}}_{b}M\hfill & =\frac{{\mathrm{log}}_{n}M}{{\mathrm{log}}_{n}b}\hfill & \text{Substitute for }y.\hfill \end{array}[/latex]
For example, to evaluate [latex]{\mathrm{log}}_{5}36[/latex] using a calculator, we must first rewrite the expression as a quotient of common or natural logs. We will use the common log.
[latex]\begin{array}{l}{\mathrm{log}}_{5}36\hfill & =\frac{\mathrm{log}\left(36\right)}{\mathrm{log}\left(5\right)}\hfill & \text{Apply the change of base formula using base 10}\text{.}\hfill \\ \hfill & \approx 2.2266\text{ }\hfill & \text{Use a calculator to evaluate to 4 decimal places}\text{.}\hfill \end{array}[/latex]
A General Note: The Change-of-Base Formula
The change-of-base formula can be used to evaluate a logarithm with any base.
For any positive real numbers M, b, and n, where [latex]n\ne 1[/latex] and [latex]b\ne 1[/latex],
[latex]{\mathrm{log}}_{b}M\text{=}\frac{{\mathrm{log}}_{n}M}{{\mathrm{log}}_{n}b}[/latex].
It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient of common or natural logs.
[latex]{\mathrm{log}}_{b}M=\frac{\mathrm{ln}M}{\mathrm{ln}b}[/latex]
and
[latex]{\mathrm{log}}_{b}M=\frac{\mathrm{log}M}{\mathrm{log}b}[/latex]
How To: Given a logarithm Of the form [latex]{\mathrm{log}}_{b}M[/latex], use the change-of-base formula to rewrite it as a quotient of logs with any positive base [latex]n[/latex], where [latex]n\ne 1[/latex]
- Determine the new base n, remembering that the common log, [latex]\mathrm{log}\left(x\right)[/latex], has base 10 and the natural log, [latex]\mathrm{ln}\left(x\right)[/latex], has base e.
- Rewrite the log as a quotient using the change-of-base formula:
- The numerator of the quotient will be a logarithm with base n and argument M.
- The denominator of the quotient will be a logarithm with base n and argument b.
Example: Changing Logarithmic Expressions to Expressions Involving Only Natural Logs
Change [latex]{\mathrm{log}}_{5}3[/latex] to a quotient of natural logarithms.
Try It
Change [latex]{\mathrm{log}}_{0.5}8[/latex] to a quotient of natural logarithms.
Q & A
Can we change common logarithms to natural logarithms?
Yes. Remember that [latex]\mathrm{log}9[/latex] means [latex]{\text{log}}_{\text{10}}\text{9}[/latex]. So, [latex]\mathrm{log}9=\frac{\mathrm{ln}9}{\mathrm{ln}10}[/latex].
Example: Using the Change-of-Base Formula with a Calculator
Evaluate [latex]{\mathrm{log}}_{2}\left(10\right)[/latex] using the change-of-base formula with a calculator.
Try It
Evaluate [latex]{\mathrm{log}}_{5}\left(100\right)[/latex] using the change-of-base formula.
Contribute!
Candela Citations
- Revision and Adaptation. Provided by: Lumen Learning. License: CC BY: Attribution
- Question ID 35015. Authored by: Smart,Jim. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- College Algebra. Authored by: Abramson, Jay et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2