## Key Equations

 general form of a quadratic function $f\left(x\right)=a{x}^{2}+bx+c$ standard form of a quadratic function $f\left(x\right)=a{\left(x-h\right)}^{2}+k$

## Key Concepts

• A polynomial function of degree two is called a quadratic function.
• The graph of a quadratic function is a parabola. A parabola is a U-shaped curve that can open either up or down.
• The axis of symmetry is the vertical line passing through the vertex.
• Quadratic functions are often written in general form. Standard or vertex form is useful to easily identify the vertex of a parabola. Either form can be written from a graph.
• The vertex can be found from an equation representing a quadratic function.
• The domain of a quadratic function is all real numbers. The range varies with the function.

## Glossary

axis of symmetry
a vertical line drawn through the vertex of a parabola around which the parabola is symmetric; it is defined by $x=-\frac{b}{2a}$.
general form of a quadratic function
the function that describes a parabola, written in the form $f\left(x\right)=a{x}^{2}+bx+c$, where $a$, $b$, and $c$ are real numbers and $a\ne 0$.
standard form of a quadratic function
the function that describes a parabola, written in the form $f\left(x\right)=a{\left(x-h\right)}^{2}+k$, where $\left(h,\text{ }k\right)$ is the vertex.

## Contribute!

Did you have an idea for improving this content? We’d love your input.