Learning Outcomes
- Identify the characteristics of reptiles
Reptiles are tetrapods. Limbless reptiles—snakes and legless lizards—are classified as tetrapods because they are descended from four-limbed ancestors. Reptiles lay calcareous or leathery eggs enclosed in shells on land. Even aquatic reptiles return to the land to lay eggs. They usually reproduce sexually with internal fertilization. Some species display ovoviviparity, with the eggs remaining in the mother’s body until they are ready to hatch. In ovoviviparous reptiles, most nutrients are supplied by the egg yolk, while the chorioallantois assists with respiration. Other species are viviparous, with the offspring born alive, with their development supported by a yolk sac-placenta, a chorioallantoic-placenta, or both.
One of the key adaptations that permitted reptiles to live on land was the development of their scaly skin, containing the protein keratin and waxy lipids, which reduced water loss from the skin. A number of keratinous epidermal structures have emerged in the descendants of various reptilian lineages and some have become defining characters for these lineages: scales, claws, nails, horns, feathers, and hair. Their occlusive skin means that reptiles cannot use their skin for respiration, like amphibians, and thus all amniotes breathe with lungs. All reptiles grow throughout their lives and regularly shed their skin, both to accommodate their growth and to rid themselves of ectoparasites. Snakes tend to shed the entire skin at one time, but other reptiles shed their skins in patches.
Reptiles ventilate their lungs using various muscular mechanisms to produce negative pressure (low pressure) within the lungs that allows them to expand and draw in air. In snakes and lizards, the muscles of the spine and ribs are used to expand or contract the rib cage. Since walking or running interferes with this activity, the squamates cannot breathe effectively while running. Some squamates can supplement rib movement with buccal pumping through the nose, with the mouth closed. In crocodilians, the lung chamber is expanded and contracted by moving the liver, which is attached to the pelvis. Turtles have a special problem with breathing, because their rib cage cannot expand. However, they can change the pressure around the lungs by pulling their limbs in and out of the shell, and by moving their internal organs. Some turtles also have a posterior respiratory sac that opens off the hindgut that aids in the diffusion of gases.
Most reptiles are ectotherms, animals whose main source of body heat comes from the environment; however, some crocodilians maintain elevated thoracic temperatures and thus appear to be at least regional endotherms. This is in contrast to true endotherms, which use heat produced by metabolism and muscle contraction to regulate body temperature over a very narrow temperature range, and thus are properly referred to as homeotherms. Reptiles have behavioral adaptations to help regulate body temperature, such as basking in sunny places to warm up through the absorption of solar radiation, or finding shady spots or going underground to minimize the absorption of solar radiation, which allows them to cool down and prevent overheating. The advantage of ectothermy is that metabolic energy from food is not required to heat the body; therefore, reptiles can survive on about 10 percent of the calories required by a similarly sized endotherm. In cold weather, some reptiles such as the garter snake brumate. Brumation is similar to hibernation in that the animal becomes less active and can go for long periods without eating, but differs from hibernation in that brumating reptiles are not asleep or living off fat reserves. Rather, their metabolism is slowed in response to cold temperatures, and the animal is very sluggish.
Try It