Embryological Development

Learning Outcomes

  • Compare and contrast the embryonic development of protostomes and deuterostomes

Most animal species undergo a separation of tissues into germ layers during embryonic development. Recall that these germ layers are formed during gastrulation, and that each germ layer typically gives rise to specific types of embryonic tissues and organs. Animals develop either two or three embryonic germ layers (Figure 1). The animals that display radial, biradial, or rotational symmetry develop two germ layers, an inner layer (endoderm or mesendoderm) and an outer layer (ectoderm). These animals are called diploblasts, and have a nonliving middle layer between the endoderm and ectoderm (although individual cells may be distributed through this middle layer, there is no coherent third layer of tissue). The four clades considered to be diploblastic have different levels of complexity and different developmental pathways, although there is little information about development in Placozoa. More complex animals (usually those with bilateral symmetry) develop three tissue layers: an inner layer (endoderm), an outer layer (ectoderm), and a middle layer (mesoderm). Animals with three tissue layers are called triploblasts.

The left illustration shows the two embryonic germ layers of a diploblast. The inner layer is the endoderm, and the outer layer is the ectoderm. Sandwiched between the endoderm and the ectoderm is a non-living layer. Right illustration shows the three embryonic germ layers of a triploblast. Like the diploblast, the triploblast has an inner endoderm and an outer ectoderm. Sandwiched between these two layers is a living mesoderm.

Figure 1. Diploblastic and triploblastic embryos. During embryogenesis, diploblasts develop two embryonic germ layers: an ectoderm and an endoderm or mesendoderm. Triploblasts develop a third layer—the mesoderm—which arises from mesendoderm and resides between the endoderm and ectoderm.

Practice Question

Which of the following statements about diploblasts and triploblasts is false?

  1. Animals that display radial symmetry are diploblasts.
  2. Animals that display bilateral symmetry are triploblasts.
  3. The endoderm gives rise to the lining of the digestive tract and the respiratory tract.
  4. The mesoderm gives rise to the central nervous system.

Each of the three germ layers is programmed to give rise to specific body tissues and organs, although there are variations on these themes. Generally speaking, the endoderm gives rise to the lining of the digestive tract (including the stomach, intestines, liver, and pancreas), as well as to the lining of the trachea, bronchi, and lungs of the respiratory tract, along with a few other structures. The ectoderm develops into the outer epithelial covering of the body surface, the central nervous system, and a few other structures. The mesoderm is the third germ layer; it forms between the endoderm and ectoderm in triploblasts. This germ layer gives rise to all specialized muscle tissues (including the cardiac tissues and muscles of the intestines), connective tissues such as the skeleton and blood cells, and most other visceral organs such as the kidneys and the spleen. Diploblastic animals may have cell types that serve multiple functions, such as epitheliomuscular cells, which serve as a covering as well as contractile cells.

Presence or Absence of a Coelom

Further subdivision of animals with three germ layers (triploblasts) results in the separation of animals that may develop an internal body cavity derived from mesoderm, called a coelom, and those that do not. This epithelial cell-lined coelomic cavity, usually filled with fluid, lies between the visceral organs and the body wall. It houses many organs such as the digestive, urinary, and reproductive systems, the heart and lungs, and also contains the major arteries and veins of the circulatory system. In mammals, the body cavity is divided into the thoracic cavity, which houses the heart and lungs, and the abdominal cavity, which houses the digestive organs. In the thoracic cavity further subdivision produces the pleural cavity, which provides space for the lungs to expand during breathing, and the pericardial cavity, which provides room for movements of the heart. The evolution of the coelom is associated with many functional advantages. For example, the coelom provides cushioning and shock absorption for the major organ systems that it encloses. In addition, organs housed within the coelom can grow and move freely, which promotes optimal organ development and placement. The coelom also provides space for the diffusion of gases and nutrients, as well as body flexibility, promoting improved animal motility.

Triploblasts that do not develop a coelom are called acoelomates, and their mesoderm region is completely filled with tissue, although they do still have a gut cavity. Examples of acoelomates include animals in the phylum Platyhelminthes, also known as flatworms. Animals with a true coelom are called eucoelomates (or coelomates) (Figure 2). In such cases, a true coelom arises entirely within the mesoderm germ layer and is lined by an epithelial membrane. This membrane also lines the organs within the coelom, connecting and holding them in position while allowing them some freedom of movement. Annelids, mollusks, arthropods, echinoderms, and chordates are all eucoelomates. A third group of triploblasts has a slightly different coelom lined partly by mesoderm and partly by endoderm. Although still functionally a coelom, these are considered “false” coeloms, and so we call these animals pseudocoelomates. The phylum Nematoda (roundworms) is an example of a pseudocoelomate. True coelomates can be further characterized based on other features of their early embryological development.

Part a shows the body plan of acoelomates, including flatworms. Acoelomates have a central digestive cavity. Outside this digestive cavity are three tissue layers: an inner endoderm, a central mesoderm, and an outer ectoderm. The photo shows a swimming flatworm, which has the appearance of a frilly black and pink ribbon. Part b shows the body plan of eucoelomates, which include annelids, mollusks, arthropods, echinoderms, and chordates. Eucoelomates have the same tissue layers as acoelomates, but a cavity called a coelom exists within the mesoderm. The coelom is divided into two symmetrical parts that are separated by two spokes of mesoderm. The photo shows a swimming annelid known as a bloodworm. The bloodworm has a tubular body that tapers at each end. Numerous appendages radiate from either side. Part c shows the body plan of pseudocoelomates, which include roundworms. Like the acoelomates and eucoelomates, the pseudocoelomates have an endoderm, a mesoderm, and an ectoderm. However, in pseudocoelomates, a pseudocoelum separates the endoderm from the mesoderm. The photo shows a roundworm, or nematode, which has a tubular body.

Figure 2. Body cavities. Triploblasts may be (a) acoelomates, (b) eucoelomates, or (c) pseudocoelomates. Acoelomates have no body cavity. Eucoelomates have a body cavity within the mesoderm, called a coelom, in which both the gut and the body wall are lined with mesoderm. Pseudocoelomates also have a body cavity, but only the body wall is lined with mesoderm. (credit a: modification of work by Jan Derk; credit b: modification of work by NOAA; credit c: modification of work by USDA, ARS)

Embryonic Development of the Mouth

The illustration compares the development of protostomes and deuterostomes. In both protostomes and deuterostomes, the gastrula, which resembles a hollow ball of cells, contains an indentation called a blastopore. In protostomes, two circular layers of mesoderm form inside the gastrula, containing the coelom cavity. As the protostome develops, the mesoderm grows and fuses with the gastrula cell layer. The blastopore becomes the mouth, and a second opening forms opposite the mouth, which becomes the anus. In deuterostomes, two groups of gastrula cells in the blastopore grow inward to form the mesoderm. As the deuterostome develops, the mesoderm pinches off and fuses, forming a second body cavity. The body plan of the deuterostome at this stage looks very similar to that of the protostome, but the blastopore becomes the anus, and the second opening becomes the mouth.

Figure 3. Eucoelomates can be divided into two groups based on their early embryonic development. In protostomes, the mouth forms at or near the site of the blastopore and the body cavity forms by splitting the mesodermal mass during the process of schizocoely. In deuterostomes, the mouth forms at a site opposite the blastopore end of the embryo and the mesoderm pinches off to form the coelom during the process of enterocoely.

Bilaterally symmetrical, tribloblastic eucoelomates can be further divided into two groups based on differences in the origin of the mouth. When the primitive gut forms, the opening that first connects the gut cavity to the outside of the embryo is called the blastopore. Most animals have openings at both ends of the gut: mouth at one end and anus at the other. One of these openings will develop at or near the site of the blastopore. In Protostomes (“mouth first”), the mouth develops at the blastopore (Figure 3).

In Deuterostomes (“mouth second”), the mouth develops at the other end of the gut (Figure 3) and the anus develops at the site of the blastopore. Protostomes include arthropods, mollusks, and annelids. Deuterostomes include more complex animals such as chordates but also some “simple” animals such as echinoderms. Recent evidence has challenged this simple view of the relationship between the location of the blastopore and the formation of the mouth, however, and the theory remains under debate. Nevertheless, these details of mouth and anus formation reflect general differences in the organization of protostome and deuterostome embryos, which are also expressed in other developmental features.

One of these differences between protostomes and deuterostomes is the method of coelom formation, beginning from the gastrula stage. Since body cavity formation tends to accompany the formation of the mesoderm, the mesoderm of protostomes and deuterostomes forms differently. The coelom of most protostomes is formed through a process called schizocoely. The mesoderm in these organisms is usually the product of specific blastomeres, which migrate into the interior of the embryo and form two clumps of mesodermal tissue. Within each clump, cavities develop and merge to form the hollow opening of the coelom. Deuterostomes differ in that their coelom forms through a process called enterocoely. Here, the mesoderm develops as pouches that are pinched off from the endoderm tissue. These pouches eventually fuse and expand to fill the space between the gut and the body wall, giving rise to the coelom.

Another difference in organization of protostome and deuterostome embryos is expressed during cleavage. Protostomes undergo spiral cleavage, meaning that the cells of one pole of the embryo are rotated, and thus misaligned, with respect to the cells of the opposite pole. This is due to the oblique angle of cleavage relative to the two poles of the embryo. Deuterostomes undergo radial cleavage, where the cleavage axes are either parallel or perpendicular to the polar axis, resulting in the parallel (up-and-down) alignment of the cells between the two poles.

A second distinction between the types of cleavage in protostomes and deuterostomes relates to the fate of the resultant blastomeres (cells produced by cleavage). In addition to spiral cleavage, protostomes also undergo determinate cleavage. This means that even at this early stage, the developmental fate of each embryonic cell is already determined. A given cell does not have the ability to develop into any cell type other than its original destination. Removal of a blastomere from an embryo with determinate cleavage can result in missing structures, and embryos that fail to develop. In contrast, deuterostomes undergo indeterminate cleavage, in which cells are not yet fully committed at this early stage to develop into specific cell types. Removal of individual blastomeres from these embryos does not result in the loss of embryonic structures. In fact, twins (clones) can be produced as a result from blastomeres that have been separated from the original mass of blastomere cells. Unlike protostomes, however, if some blastomeres are damaged during embryogenesis, adjacent cells are able to compensate for the missing cells, and the embryo is not damaged. These cells are referred to as undetermined cells. This characteristic of deuterostomes is reflected in the existence of familiar embryonic stem cells, which have the ability to develop into any cell type until their fate is programmed at a later developmental stage.

The Evolution of the Coelom

One of the first steps in the classification of animals is to examine the animal’s body. One structure that is used in classification of animals is the body cavity or coelom. The body cavity develops within the mesoderm, so only triploblastic animals can have body cavities. Therefore body cavities are found only within the Bilateria. In other animal clades, the gut is either close to the body wall or separated from it by a jelly-like material. The body cavity is important for two reasons. Fluid within the body cavity protects the organs from shock and compression. In addition, since in triploblastic embryos, most muscle, connective tissue, and blood vessels develop from mesoderm, these tissues developing within the lining of the body cavity can reinforce the gut and body wall, aid in motility, and efficiently circulate nutrients.

To recap what we have discussed above, animals that do not have a coelom are called acoelomates. The major acoelomate group in the Bilateria is the flatworms, including both free-living and parasitic forms such as tapeworms. In these animals, mesenchyme fills the space between the gut and the body wall. Although two layers of muscle are found just under the epidermis, there is no muscle or other mesodermal tissue around the gut. Flatworms rely on passive diffusion for nutrient transport across their body.

In pseudocoelomates, there is a body cavity between the gut and the body wall, but only the body wall has mesodermal tissue. In these animals, the mesoderm forms, but does not develop cavities within it. Major pseudocoelomate phyla are the rotifers and nematodes. Animals that have a true coelom are called eucoelomates; all vertebrates, as well as molluscs, annelids, arthropods, and echinoderms, are eucoelomates. The coelom develops within the mesoderm during embryogenesis. Of the major bilaterian phyla, the molluscs, annelids, and arthropods are schizocoels, in which the mesoderm splits to form the body cavity, while the echinoderms and chordates are enterocoels, in which the mesoderm forms as two or more buds off of the gut. These buds separate from the gut and coalesce to form the body cavity. In the vertebrates, mammals have a subdivided body cavity, with the thoracic cavity separated from the abdominal cavity. The pseudocoelomates may have had eucoelomate ancestors and may have lost their ability to form a complete coelom through genetic mutations. Thus, this step in early embryogenesis—the formation of the coelom—has had a large evolutionary impact on the various species of the animal kingdom.

Try It