Male Reproductive Anatomy

Learning Outcomes

  • Describe human male reproductive anatomies
Illustration shows a cross section of the penis and testes. The penis widens at the end, into the glans, which is surrounded by the foreskin. The urethra is an opening that runs through the middle of the penis to the bladder. The tissue surrounding the urethra is the Corpus spongiosum, and above the Corpus spongiosum is the Corpus cavernosum. The testes, located immediately behind the penis, are covered by the scrotum. Seminiferous tubules are located in the testes. The epididymis partly surrounds the sac containing the seminiferous tubules. The Vas deferens is a tube connecting the seminiferous tubules to the ejaculatory duct, which begins in the prostate gland. The prostate gland is located behind and below the bladder. The seminal vesicle, located above the prostate, also connects to the seminal vesicle. The bulbourethral gland connects to the ejaculatory duct where the ejaculatory duct enters the penis.

Figure 1. The reproductive structures of the human male are shown.

In the male reproductive system, the scrotum houses the testicles or testes (singular: testis), including providing passage for blood vessels, nerves, and muscles related to testicular function. The testes are a pair of male reproductive organs that produce sperm and some reproductive hormones. Each testis is approximately 2.5 by 3.8 cm (1.5 by 1 in) in size and divided into wedge-shaped lobules by connective tissue called septa. Coiled in each wedge are seminiferous tubules that produce sperm.

Sperm are immobile at body temperature; therefore, the scrotum and penis are external to the body, as illustrated in Figure 1 so that a proper temperature is maintained for motility. In land mammals, the pair of testes must be suspended outside the body at about 2° C lower than body temperature to produce viable sperm. Infertility can occur in land mammals when the testes do not descend through the abdominal cavity during fetal development.

Practice Question

Which of the following statements about the male reproductive system is false?

  1. The vas deferens carries sperm from the testes to the penis.
  2. Sperm mature in seminiferous tubules in the testes.
  3. Both the prostate and the bulbourethral glands produce components of the semen.
  4. The prostate gland is located in the testes.

Sperm mature in seminiferous tubules that are coiled inside the testes, as illustrated in Figure 1. The walls of the seminiferous tubules are made up of the developing sperm cells, with the least developed sperm at the periphery of the tubule and the fully developed sperm in the lumen. The sperm cells are mixed with “nursemaid” cells called Sertoli cells which protect the germ cells and promote their development. Other cells mixed in the wall of the tubules are the interstitial cells of Leydig. These cells produce high levels of testosterone once the male reaches adolescence.

When the sperm have developed flagella and are nearly mature, they leave the testicles and enter the epididymis, shown in Figure 1. This structure resembles a comma and lies along the top and posterior portion of the testes; it is the site of sperm maturation. The sperm leave the epididymis and enter the vas deferens (or ductus deferens), which carries the sperm, behind the bladder, and forms the ejaculatory duct with the duct from the seminal vesicles. During a vasectomy, a section of the vas deferens is removed, preventing sperm from being passed out of the body during ejaculation and preventing fertilization.

Semen is a mixture of sperm and spermatic duct secretions (about 10 percent of the total) and fluids from accessory glands that contribute most of the semen’s volume. Sperm are haploid cells, consisting of a flagellum as a tail, a neck that contains the cell’s energy-producing mitochondria, and a head that contains the genetic material. Figure 2 shows a micrograph of human sperm as well as a diagram of the parts of the sperm. An acrosome is found at the top of the head of the sperm. This structure contains lysosomal enzymes that can digest the protective coverings that surround the egg to help the sperm penetrate and fertilize the egg. An ejaculate will contain from two to five milliliters of fluid with from 50–120 million sperm per milliliter.

Micrograph shows human sperm, which have an oval head about 3 microns across and a very long flagellum. Illustration shows that the head is surrounded by the acrosome. The part of the tail closest to the head, called the neck, is thicker than the rest.

Figure 2. Human sperm, visualized using scanning electron microscopy, have a flagellum, neck, and head. (credit b: modification of work by Mariana Ruiz Villareal; scale-bar data from Matt Russell)

The bulk of the semen comes from the accessory glands associated with the male reproductive system. These are the seminal vesicles, the prostate gland, and the bulbourethral gland, all of which are illustrated in Figure 1. The seminal vesicles are a pair of glands that lie along the posterior border of the urinary bladder. The glands make a solution that is thick, yellowish, and alkaline. As sperm are only motile in an alkaline environment, a basic pH is important to reverse the acidity of the vaginal environment. The solution also contains mucus, fructose (a sperm mitochondrial nutrient), a coagulating enzyme, ascorbic acid, and local-acting hormones called prostaglandins. The seminal vesicle glands account for 60 percent of the bulk of semen.

The penis, illustrated in Figure 1, is an organ that drains urine from the renal bladder and functions as a copulatory organ during intercourse. The penis contains three tubes of erectile tissue running through the length of the organ. These consist of a pair of tubes on the dorsal side, called the corpus cavernosum, and a single tube of tissue on the ventral side, called the corpus spongiosum. This tissue will become engorged with blood, becoming erect and hard, in preparation for intercourse. The organ is inserted into the vagina culminating with an ejaculation. During intercourse, the smooth muscle sphincters at the opening to the renal bladder close and prevent urine from entering the penis. An orgasm is a two-stage process: first, glands and accessory organs connected to the testes contract, then semen (containing sperm) is expelled through the urethra during ejaculation. After intercourse, the blood drains from the erectile tissue and the penis becomes flaccid.

The walnut-shaped prostate gland surrounds the urethra, the connection to the urinary bladder. It has a series of short ducts that directly connect to the urethra. The gland is a mixture of smooth muscle and glandular tissue. The muscle provides much of the force needed for ejaculation to occur. The glandular tissue makes a thin, milky fluid that contains citrate (a nutrient), enzymes, and prostate specific antigen (PSA). PSA is a proteolytic enzyme that helps to liquefy the ejaculate several minutes after release from the male. Prostate gland secretions account for about 30 percent of the bulk of semen.

The bulbourethral gland, or Cowper’s gland, releases its secretion prior to the release of the bulk of the semen. It neutralizes any acid residue in the urethra left over from urine. This usually accounts for a couple of drops of fluid in the total ejaculate and may contain a few sperm. Withdrawal of the penis from the vagina before ejaculation to prevent pregnancy may not work if sperm are present in the bulbourethral gland secretions. The location and functions of the male reproductive organs are summarized in Table 1.

Table 1. Male Reproductive Anatomy
Organ Location Function
Scrotum External Carry and support testes
Penis External Deliver urine, copulating organ
Testes Internal Produce sperm and male hormones
Seminal Vesicles Internal Contribute to semen production
Prostate Gland Internal Contribute to semen production
Bulbourethral Glands Internal Clean urethra at ejaculation

 

Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More