Chromosome Structure

Learning Outcomes

  • Understand how DNA is protected and compacted inside cells

The continuity of life from one cell to another has its foundation in the reproduction of cells by way of the cell cycle. The cell cycle is an orderly sequence of events that describes the stages of a cell’s life from the division of a single parent cell to the production of two new daughter cells. The mechanisms involved in the cell cycle are highly regulated. Part of that regulation involves the physical shape and structure that the DNA has during different phases of the cell cycle.

Eukaryotic Chromosomal Structure and Compaction

If the DNA from all 46 chromosomes in a human cell nucleus was laid out end to end, it would measure approximately two meters; however, its diameter would be only 2 nm. Considering that the size of a typical human cell is about 10 µm (100,000 cells lined up to equal one meter), DNA must be tightly packaged to fit in the cell’s nucleus. At the same time, it must also be readily accessible for the genes to be expressed. During some stages of the cell cycle, the long strands of DNA are condensed into compact chromosomes. There are a number of ways that chromosomes are compacted.

In the first level of compaction, short stretches of the DNA double helix wrap around a core of eight histone proteins at regular intervals along the entire length of the chromosome (Figure 1). The DNA-histone complex is called chromatin. The beadlike, histone DNA complex is called a nucleosome, and DNA connecting the nucleosomes is called linker DNA. A DNA molecule in this form is about seven times shorter than the double helix without the histones, and the beads are about 10 nm in diameter, in contrast with the 2-nm diameter of a DNA double helix. The next level of compaction occurs as the nucleosomes and the linker DNA between them are coiled into a 30-nm chromatin fiber. This coiling further shortens the chromosome so that it is now about 50 times shorter than the extended form. In the third level of packing, a variety of fibrous proteins is used to pack the chromatin. These fibrous proteins also ensure that each chromosome in a non-dividing cell occupies a particular area of the nucleus that does not overlap with that of any other chromosome.

There are five levels of chromosome organization. From top to bottom: The top panel shows a DNA double helix. The second panel shows the double helix wrapped around proteins called histones. The middle panel shows the entire DNA molecule wrapping around many histones, creating the appearance of beads on a string. The fourth panel shows that the chromatin fiber further condenses into the chromosome shown in the bottom panel.

Figure 1. Double-stranded DNA wraps around histone proteins to form nucleosomes that have the appearance of “beads on a string.” The nucleosomes are coiled into a 30-nm chromatin fiber. When a cell undergoes mitosis, the chromosomes condense even further.

DNA replicates in the S phase of interphase. After replication, the chromosomes are composed of two linked sister chromatids. The connection between the sister chromatids is closest in a region called the centromere. The conjoined sister chromatids, are visible under a light microscope. The centromeric region is highly condensed and thus will appear as a constricted area.

This animation illustrates the different levels of chromosome packing:

In Summary: Chromosome Structure

DNA in eukaryotes is highly structured and organized in all stages of an organisms life. Diploid organisms contain a pair of each chromosome; humans have 23 pairs for a total number of 46 chromosomes. Pairs of chromosomes, also known as homologous chromosomes, contain the same genes though there may be differences between the version of gene on each member of the pair. DNA is normally tightly packed into the nucleus of a eukaryotic cell, through protein-DNA complexes that form the characteristic condensed ‘chromosome’ shape. DNA compacts even further in preparation for cell division.

Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More