Medical Uses of Genetic Information

Learning Outcomes

  • Discuss medical uses of genetic information and the potential benefits and risks of this

Personalized Medicine

Watch this video and consider whether you would be interested in knowing details about your own personal disease risk or susceptibility.


Predicting Disease Risk at the Individual Level

Predicting the risk of disease involves screening currently healthy individuals by genome analysis at the individual level. Intervention with lifestyle changes and drugs can be recommended before disease onset. However, this approach is most applicable when the problem resides within a single gene defect. Such defects only account for approximately 5 percent of diseases in developed countries. Most of the common diseases, such as heart disease, are multi-factored or polygenic, which is a phenotypic characteristic that involves two or more genes, and also involve environmental factors such as diet. In April 2010, scientists at Stanford University published the genome analysis of a healthy individual (Stephen Quake, a scientist at Stanford University, who had his genome sequenced); the analysis predicted his propensity to acquire various diseases. A risk assessment was performed to analyze Quake’s percentage of risk for 55 different medical conditions. A rare genetic mutation was found, which showed him to be at risk for sudden heart attack. He was also predicted to have a 23 percent risk of developing prostate cancer and a 1.4 percent risk of developing Alzheimer’s. The scientists used databases and several publications to analyze the genomic data. Even though genomic sequencing is becoming more affordable and analytical tools are becoming more reliable, ethical issues surrounding genomic analysis at a population level remain to be addressed.

Debate remains over what to do with individual level data as well, such as the data from the genomic analysis of Quake’s DNA. As a result of the study it was recommended that Quake start a regiment of preventative statins; the long-term effects of this study or treatment remain unknown at this stage.

The PCA3 test occurs in three steps. In step one, PCA3 mRNA anneals to complementary DNA primers that are attached to beads. In step two, the mRNA is amplified using reverse-transcriptase PCR. In step three, the mRNA is detected using a chemiluminescent probe.

Figure 1. PCA3 is a gene that is expressed in prostate epithelial cells and overexpressed in cancerous cells. A high concentration of PCA3 in urine is indicative of prostate cancer. The PCA3 test is considered to be a better indicator of cancer than the more well know PSA test, which measures the level of PSA (prostate-specific antigen) in the blood.

For example, in 2011, the United States Preventative Services Task Force recommended against using the PSA test to screen healthy men for prostate cancer. Their recommendation is based on evidence that screening does not reduce the risk of death from prostate cancer. Prostate cancer often develops very slowly and does not cause problems, while the cancer treatment can have severe side effects. The PCA3 (Figure 1) test is considered to be more accurate, but screening may still result in men who would not have been harmed by the cancer itself suffering side effects from treatment.

What do you think? Should all healthy men be screened for prostate cancer using the PCA3 or PSA test? Should people in general be screened to find out if they have a genetic risk for cancer or other diseases?

There are no right or wrong answers to these questions. While it is true that prostate cancer treatment itself can be harmful, many men would rather be aware that they have cancer so they can monitor the disease and begin treatment if it progresses. And while genetic screening may be useful, it is expensive and may cause needless worry. People with certain risk factors may never develop the disease, and preventative treatments may do more harm than good.

Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More