Find the Slope from a Graph

Learning Objectives

  • Find the Slope from a Graph
    • Identify rise and run from a graph
    • Distinguish between graphs of lines with negative and positive slopes

Identify slope from a graph

The mathematical definition of slope is very similar to our everyday one. In math, slope is used to describe the steepness and direction of lines. By just looking at the graph of a line, you can learn some things about its slope, especially relative to other lines graphed on the same coordinate plane. Consider the graphs of the three lines shown below:

Three different lines on a graph. Line A is tilted upward. Line B is sharply titled upward. Line C is sharply tilted downward.

First, let’s look at lines A and B. If you imagined these lines to be hills, you would say that line B is steeper than line A. Line B has a greater slope than line A.

Next, notice that lines A and B slant up as you move from left to right. We say these two lines have a positive slope. Line C slants down from left to right. Line C has a negative slope. Using two of the points on the line, you can find the slope of the line by finding the rise and the run. The vertical change between two points is called the rise, and the horizontal change is called the run. The slope equals the rise divided by the run: [latex]\displaystyle \text{Slope }=\frac{\text{rise}}{\text{run}}[/latex].

A line that crosses the points (2,1) and (6,3). A blue line labeled Rise goes up two units from the point (2,1). A red line labeled Run goes left from the point (6,3) so that it forms a triangle with the main line and the Rise line. A formula says slope equals rise over run.

You can determine the slope of a line from its graph by looking at the rise and run. One characteristic of a line is that its slope is constant all the way along it. So, you can choose any 2 points along the graph of the line to figure out the slope. Let’s look at an example.

Example

Use the graph to find the slope of the line.

A line that crosses the points (2,1) and (6,3). A blue line labeled Rise goes up two units from the point (2,1). A red line labeled Run goes left from the point (6,3) so that it forms a triangle with the main line and the Rise line. A formula says slope equals rise over run.

This line will have a slope of [latex]\displaystyle \frac{1}{2}[/latex] no matter which two points you pick on the line. Try measuring the slope from the origin, [latex](0,0)[/latex], to the point [latex](6,3)[/latex]. You will find that the [latex]\text{rise}=3[/latex] and the [latex]\text{run}=6[/latex]. The slope is [latex]\displaystyle \frac{\text{rise}}{\text{run}}=\frac{3}{6}=\frac{1}{2}[/latex]. It is the same!

Let’s look at another example.

Example

Use the graph to find the slope of the two lines. 

A graph showing two lines with their rise and run. The first line is drawn through the points (-2,1) and (-1,5). The rise goes up from the point (-2,1) to join with the run line that goes right to the point (-1,5). The second line is drawn through the points (-1,-2) and (3,-1). The rise goes up from the point (-1,-2) to join with the run to go right to the point (3,-1).

When you look at the two lines, you can see that the blue line is steeper than the red line. It makes sense the value of the slope of the blue line, 4, is greater than the value of the slope of the red line, [latex]\displaystyle \frac{1}{4}[/latex]. The greater the slope, the steeper the line.

Finding the Slope of a Line From a Graph

Distinguish between graphs of lines with negative and positive slopes

Direction is important when it comes to determining slope. It’s important to pay attention to whether you are moving up, down, left, or right; that is, if you are moving in a positive or negative direction. If you go up to get to your second point, the rise is positive. If you go down to get to your second point, the rise is negative. If you go right to get to your second point, the run is positive. If you go left to get to your second point, the run is negative.

In the following two examples, you will see a slope that is positive and one that is negative.

Example (Advanced)

Find the slope of the line graphed below.

Line drawn through the point (-3,-0.25) and (3,4.25).

The next example shows a line with a negative slope.

Example

Find the slope of the line graphed below.

A downward-sloping line that goes through points A and B. Point A is (0,4) and point B is (2,1). The rise goes down three units, and the run goes right 2 units.

In the example above, you could have found the slope by starting at point B, running [latex]{-2}[/latex], and then rising [latex]+3[/latex] to arrive at point A. The result is still a slope of [latex]\displaystyle\frac{\text{rise}}{\text{run}}=\frac{+3}{-2}=-\frac{3}{2}[/latex].