Essential Concepts
- Differential calculus arose from trying to solve the problem of determining the slope of a line tangent to a curve at a point. The slope of the tangent line indicates the rate of change of the function, also called the derivative. Calculating a derivative requires finding a limit.
- Integral calculus arose from trying to solve the problem of finding the area of a region between the graph of a function and the [latex]x[/latex]-axis. We can approximate the area by dividing it into thin rectangles and summing the areas of these rectangles. This summation leads to the value of a function called the integral. The integral is also calculated by finding a limit and, in fact, is related to the derivative of a function.
- Multivariable calculus enables us to solve problems in three-dimensional space, including determining motion in space and finding volumes of solids.
Key Equations
- Slope of a Secant Line
[latex]m_{\sec}=\dfrac{f(x)-f(a)}{x-a}[/latex] - Average Velocity over Interval [latex][a,t][/latex]
[latex]v_{\text{avg}}=\dfrac{s(t)-s(a)}{t-a}[/latex]
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 1. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/details/books/calculus-volume-1. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction