Problem Set: Comparison Tests

Use the comparison test to determine whether the following series converge.

1. [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] where [latex]{a}_{n}=\frac{2}{n\left(n+1\right)}[/latex]

2. [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] where [latex]{a}_{n}=\frac{1}{n\left(n+\frac{1}{2}\right)}[/latex]

3. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{2\left(n+1\right)}[/latex]

4. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{2n - 1}[/latex]

5. [latex]\displaystyle\sum _{n=2}^{\infty }\frac{1}{{\left(n\text{ln}n\right)}^{2}}[/latex]

6. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{n\text{!}}{\left(n+2\right)\text{!}}[/latex]

7. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n\text{!}}[/latex]

8. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\sin\left(\frac{1}{n}\right)}{n}[/latex]

9. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{\sin}^{2}n}{{n}^{2}}[/latex]

10. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\sin\left(\frac{1}{n}\right)}{\sqrt{n}}[/latex]

11. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{n}^{1.2}-1}{{n}^{2.3}+1}[/latex]

12. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\sqrt{n+1}-\sqrt{n}}{n}[/latex]

13. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\sqrt[4]{n}}{\sqrt[3]{{n}^{4}+{n}^{2}}}[/latex]

Use the limit comparison test to determine whether each of the following series converges or diverges.

14. [latex]\displaystyle\sum _{n=1}^{\infty }{\left(\frac{\text{ln}n}{n}\right)}^{2}[/latex]

15. [latex]\displaystyle\sum _{n=1}^{\infty }{\left(\frac{\text{ln}n}{{n}^{0.6}}\right)}^{2}[/latex]

16. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\text{ln}\left(1+\frac{1}{n}\right)}{n}[/latex]

17. [latex]\displaystyle\sum _{n=1}^{\infty }\text{ln}\left(1+\frac{1}{{n}^{2}}\right)[/latex]

18. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{4}^{n}-{3}^{n}}[/latex]

19. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{n}^{2}-n\sin{n}}[/latex]

20. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{e}^{\left(1.1\right)n}-{3}^{n}}[/latex]

21. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{e}^{\left(1.01\right)n}-{3}^{n}}[/latex]

22. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{n}^{1+\frac{1}{n}}}[/latex]

23. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{2}^{1+\frac{1}{n}}{n}^{1+\frac{1}{n}}}[/latex]

24. [latex]\displaystyle\sum _{n=1}^{\infty }\left(\frac{1}{n}-\sin\left(\frac{1}{n}\right)\right)[/latex]

25. [latex]\displaystyle\sum _{n=1}^{\infty }\left(1-\cos\left(\frac{1}{n}\right)\right)[/latex]

26. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}\left(\frac{\pi }{2}-{\tan}^{-1}n\right)[/latex]

27. [latex]\displaystyle\sum _{n=1}^{\infty }{\left(1-\frac{1}{n}\right)}^{n.n}[/latex] (Hint: [latex]{\left(1-\frac{1}{n}\right)}^{n}\to \frac{1}{e}.[/latex])

28. [latex]\displaystyle\sum _{n=1}^{\infty }\left(1-{e}^{-\frac{1}{n}}\right)[/latex] (Hint: [latex]\frac{1}{e}\approx {\left(1 - \frac{1}{n}\right)}^{n}[/latex], so [latex]1-{e}^{-\frac{1}{n}}\approx \frac{1}{n}.[/latex])

29. Does [latex]\displaystyle\sum _{n=2}^{\infty }\frac{1}{{\left(\text{ln}n\right)}^{p}}[/latex] converge if [latex]p[/latex] is large enough? If so, for which [latex]p\text{?}[/latex]

30. Does [latex]\displaystyle\sum _{n=1}^{\infty }{\left(\frac{\left(\text{ln}n\right)}{n}\right)}^{p}[/latex] converge if [latex]p[/latex] is large enough? If so, for which [latex]p\text{?}[/latex]

31. For which [latex]p[/latex] does the series [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{2}^{pn}}{{3}^{n}}[/latex] converge?

32. For which [latex]p>0[/latex] does the series [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{n}^{p}}{{2}^{n}}[/latex] converge?

33. For which [latex]r>0[/latex] does the series [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{r}^{{n}^{2}}}{{2}^{n}}[/latex] converge?

34. For which [latex]r>0[/latex] does the series [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{2}^{n}}{{r}^{{n}^{2}}}[/latex] converge?

35. Find all values of [latex]p[/latex] and [latex]q[/latex] such that [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{n}^{p}}{{\left(n\text{!}\right)}^{q}}[/latex] converges.

36. Does [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{\sin}^{2}\left(\frac{nr}{2}\right)}{n}[/latex] converge or diverge? Explain.

37. Explain why, for each [latex]n[/latex], at least one of [latex]\left\{|\sin{n}|,|\sin\left(n+1\right)|\text{,...},|\sin{n}+6|\right\}[/latex] is larger than [latex]\frac{1}{2}[/latex]. Use this relation to test convergence of [latex]\displaystyle\sum _{n=1}^{\infty }\frac{|\sin{n}|}{\sqrt{n}}[/latex].

38. Suppose that [latex]{a}_{n}\ge 0[/latex] and [latex]{b}_{n}\ge 0[/latex] and that [latex]\displaystyle\sum _{n=1}^{\infty }{a}^{2}{}_{n}[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{b}^{2}{}_{n}[/latex] converge. Prove that [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{b}_{n}[/latex] converges and [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{b}_{n}\le \frac{1}{2}\left(\displaystyle\sum _{n=1}^{\infty }{a}_{n}^{2}+\displaystyle\sum _{n=1}^{\infty }{b}_{n}^{2}\right)[/latex].

39. Does [latex]\displaystyle\sum _{n=1}^{\infty }{2}^{\text{-}\text{ln}\text{ln}n}[/latex] converge? (Hint: Write [latex]{2}^{\text{ln}\text{ln}n}[/latex] as a power of [latex]\text{ln}n.[/latex])

40. Does [latex]\displaystyle\sum _{n=1}^{\infty }{\left(\text{ln}n\right)}^{\text{-}\text{ln}n}[/latex] converge? (Hint: Use [latex]n={e}^{\text{ln}\left(n\right)}[/latex] to compare to a [latex]p-\text{series}\text{.}[/latex])

41. Does [latex]\displaystyle\sum _{n=2}^{\infty }{\left(\text{ln}n\right)}^{\text{-}\text{ln}\text{ln}n}[/latex] converge? (Hint: Compare [latex]{a}_{n}[/latex] to [latex]\frac{1}{n}.[/latex])

42. Show that if [latex]{a}_{n}\ge 0[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges, then [latex]\displaystyle\sum _{n=1}^{\infty }{a}^{2}{}_{n}[/latex] converges. If [latex]\displaystyle\sum _{n=1}^{\infty }{a}^{2}{}_{n}[/latex] converges, does [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] necessarily converge?

43. Suppose that [latex]{a}_{n}>0[/latex] for all [latex]n[/latex] and that [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges. Suppose that [latex]{b}_{n}[/latex] is an arbitrary sequence of zeros and ones. Does [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{b}_{n}[/latex] necessarily converge?

44. Suppose that [latex]{a}_{n}>0[/latex] for all [latex]n[/latex] and that [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] diverges. Suppose that [latex]{b}_{n}[/latex] is an arbitrary sequence of zeros and ones with infinitely many terms equal to one. Does [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{b}_{n}[/latex] necessarily diverge?

45. Complete the details of the following argument: If [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}[/latex] converges to a finite sum [latex]s[/latex], then [latex]\frac{1}{2}s=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\text{$\cdots$ }[/latex] and [latex]s-\frac{1}{2}s=1+\frac{1}{3}+\frac{1}{5}+\text{$\cdots$ }[/latex]. Why does this lead to a contradiction?

46. Show that if [latex]{a}_{n}\ge 0[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{a}^{2}{}_{n}[/latex] converges, then [latex]\displaystyle\sum _{n=1}^{\infty }{\sin}^{2}\left({a}_{n}\right)[/latex] converges.

47. Suppose that [latex]\frac{{a}_{n}}{{b}_{n}}\to 0[/latex] in the comparison test, where [latex]{a}_{n}\ge 0[/latex] and [latex]{b}_{n}\ge 0[/latex]. Prove that if [latex]\displaystyle\sum {b}_{n}[/latex] converges, then [latex]\displaystyle\sum {a}_{n}[/latex] converges.

48. Let [latex]{b}_{n}[/latex] be an infinite sequence of zeros and ones. What is the largest possible value of [latex]x=\displaystyle\sum _{n=1}^{\infty }\frac{{b}_{n}}{{2}^{n}}\text{?}[/latex]

49. Let [latex]{d}_{n}[/latex] be an infinite sequence of digits, meaning [latex]{d}_{n}[/latex] takes values in [latex]\left\{0,1\text{,$\ldots$ },9\right\}[/latex]. What is the largest possible value of [latex]x=\displaystyle\sum _{n=1}^{\infty }\frac{{d}_{n}}{{10}^{n}}[/latex] that converges?

50. Explain why, if [latex]x>\frac{1}{2}[/latex], then [latex]x[/latex] cannot be written [latex]x=\displaystyle\sum _{n=2}^{\infty }\frac{{b}_{n}}{{2}^{n}}\left({b}_{n}=0\text{ or }1,{b}_{1}=0\right)[/latex].

51. [T] Evelyn has a perfect balancing scale, an unlimited number of [latex]1\text{-kg}[/latex] weights, and one each of [latex]\frac{1}{2}\text{-kg},\frac{1}{4}\text{-kg},\frac{1}{8}\text{-kg}[/latex], and so on weights. She wishes to weigh a meteorite of unspecified origin to arbitrary precision. Assuming the scale is big enough, can she do it? What does this have to do with infinite series?

52. [T] Robert wants to know his body mass to arbitrary precision. He has a big balancing scale that works perfectly, an unlimited collection of [latex]1\text{-kg}[/latex] weights, and nine each of [latex]0.1\text{-kg,}[/latex] [latex]0.01\text{-kg},0.001\text{-kg,}[/latex] and so on weights. Assuming the scale is big enough, can he do this? What does this have to do with infinite series?

53. The series [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{2n}[/latex] is half the harmonic series and hence diverges. It is obtained from the harmonic series by deleting all terms in which [latex]n[/latex] is odd. Let [latex]m>1[/latex] be fixed. Show, more generally, that deleting all terms [latex]\frac{1}{n}[/latex] where [latex]n=mk[/latex] for some integer [latex]k[/latex] also results in a divergent series.

54. In view of the previous exercise, it may be surprising that a subseries of the harmonic series in which about one in every five terms is deleted might converge. A depleted harmonic series is a series obtained from [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}[/latex] by removing any term [latex]\frac{1}{n}[/latex] if a given digit, say [latex]9[/latex], appears in the decimal expansion of [latex]n[/latex]. Argue that this depleted harmonic series converges by answering the following questions.

  1. How many whole numbers [latex]n[/latex] have [latex]d[/latex] digits?
  2. How many [latex]d\text{-digit}[/latex] whole numbers [latex]h\left(d\right)[/latex]. do not contain [latex]9[/latex] as one or more of their digits?
  3. What is the smallest [latex]d\text{-digit}[/latex] number [latex]m\left(d\right)\text{?}[/latex]
  4. Explain why the deleted harmonic series is bounded by [latex]\displaystyle\sum _{d=1}^{\infty }\frac{h\left(d\right)}{m\left(d\right)}[/latex].
  5. Show that [latex]\displaystyle\sum _{d=1}^{\infty }\frac{h\left(d\right)}{m\left(d\right)}[/latex] converges.

55. Suppose that a sequence of numbers [latex]{a}_{n}>0[/latex] has the property that [latex]{a}_{1}=1[/latex] and [latex]{a}_{n+1}=\frac{1}{n+1}{S}_{n}[/latex], where [latex]{S}_{n}={a}_{1}+\cdots +{a}_{n}[/latex]. Can you determine whether [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges? (Hint: [latex]{S}_{n}[/latex] is monotone.)

56. Suppose that a sequence of numbers [latex]{a}_{n}>0[/latex] has the property that [latex]{a}_{1}=1[/latex] and [latex]{a}_{n+1}=\frac{1}{{\left(n+1\right)}^{2}}{S}_{n}[/latex], where [latex]{S}_{n}={a}_{1}+\text{$\cdots$ }+{a}_{n}[/latex]. Can you determine whether [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges? (Hint: [latex]{S}_{2}={a}_{2}+{a}_{1}={a}_{2}+{S}_{1}={a}_{2}+1=1+\frac{1}{4}=\left(1+\frac{1}{4}\right){S}_{1}[/latex], [latex]{S}_{3}=\frac{1}{{3}^{2}}{S}_{2}+{S}_{2}=\left(1+\frac{1}{9}\right){S}_{2}=\left(1+\frac{1}{9}\right)\left(1+\frac{1}{4}\right){S}_{1}[/latex], etc. Look at [latex]\text{ln}\left({S}_{n}\right)[/latex], and use [latex]\text{ln}\left(1+t\right)\le t[/latex], [latex]t>0.[/latex])