True or False? Justify your answer with a proof or a counterexample.
1. If [latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=0[/latex], then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges.
3. If [latex]\displaystyle\sum _{n=1}^{\infty }|{a}_{n}|[/latex] converges, then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges.
Is the sequence bounded, monotone, and convergent or divergent? If it is convergent, find the limit.
5. [latex]{a}_{n}=\frac{3+{n}^{2}}{1-n}[/latex]
7. [latex]{a}_{n}=\frac{\text{ln}\left(n+1\right)}{\sqrt{n+1}}[/latex]
9. [latex]{a}_{n}=\frac{\text{ln}\left(\cos{n}\right)}{n}[/latex]
Is the series convergent or divergent?
11. [latex]\displaystyle\sum _{n=1}^{\infty }\text{ln}\left(\frac{n+1}{n}\right)[/latex]
13. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{e}^{n}}{n\text{!}}[/latex]
Is the series convergent or divergent? If convergent, is it absolutely convergent?
15. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{\left(-1\right)}^{n}}{\sqrt{n}}[/latex]
17. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{\left(-1\right)}^{n}n\text{!}}{{n}^{n}}[/latex]
19. [latex]\displaystyle\sum _{n=1}^{\infty }\cos\left(\pi n\right){e}^{\text{-}n}[/latex]
Evaluate
21. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{\left(n+1\right)\left(n+2\right)}[/latex]
The following problems consider a simple population model of the housefly, which can be exhibited by the recursive formula [latex]{x}_{n+1}=b{x}_{n}[/latex], where [latex]{x}_{n}[/latex] is the population of houseflies at generation [latex]n[/latex], and [latex]b[/latex] is the average number of offspring per housefly who survive to the next generation. Assume a starting population [latex]{x}_{0}[/latex].
23. Find [latex]\underset{n\to \infty }{\text{lim}}{x}_{n}[/latex] if [latex]b>1[/latex], [latex]b<1[/latex], and [latex]b=1[/latex].
25. If [latex]b=\frac{3}{4}[/latex] and [latex]{x}_{0}=100[/latex], find [latex]{S}_{10}[/latex] and [latex]\underset{n\to \infty }{\text{lim}}{S}_{n}[/latex]
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction