Express the rational function as a sum or difference of two simpler rational expressions.
1. 1(x−3)(x−2)
2. x2+1x(x+1)(x+2)
Show Solution
−2x+1+52(x+2)+12x
Show Solution
1x2+3x
5. 3x2x2+1 (Hint: Use long division first.)
Show Solution
2x2+4x+8+16x−2
7. 1(x−1)(x2+1)
Show Solution
−1x2−1x+1x−1
10. 1x(x−1)(x−2)(x−3)
Show Solution
−12(x−2)+12(x−1)−16x+16(x−3)
11. 1x4−1=1(x+1)(x−1)(x2+1)
12. 3x2x3−1=3x2(x−1)(x2+x+1)
Show Solution
1x−1+2x+1x2+x+1
14. 3x4+x3+20x2+3x+31(x+1)(x2+4)2
Show Solution
2x+1+xx2+4−1(x2+4)2
Use the method of partial fractions to evaluate each of the following integrals.
15. ∫dx(x−3)(x−2)
16. ∫3xx2+2x−8dx
Show Solution
-ln|2−x|+2ln|4+x|+C
17. ∫dxx3−x
Show Solution
12ln|4−x2|+C
19. ∫dxx(x−1)(x−2)(x−3)
20. ∫2x2+4x+22x2+2x+10dx
Show Solution
2(x+13arctan(1+x3))+C
Show Solution
2ln|x|−3ln|1+x|+C
24. ∫dxx3−2x2−4x+8
Show Solution
116(-4−2+x−ln|−2+x|+ln|2+x|)+C
25. ∫dxx4−10x2+9
Evaluate the following integrals, which have irreducible quadratic factors.
26. ∫2(x−4)(x2+2x+6)dx
Show Solution
130(−2√5arctan[1+x√5]+2ln|−4+x|−ln|6+2x+x2|)+C
27. ∫x2x3−x2+4x−4dx
28. ∫x3+6x2+3x+6x3+2x2dx
Show Solution
−3x+4ln|x+2|+x+C
29. ∫x(x−1)(x2+2x+2)2dx
Use the method of partial fractions to evaluate the following integrals.
30. ∫3x+4(x2+4)(3−x)dx
Show Solution
-ln|3−x|+12ln|x2+4|+C
31. ∫2(x+2)2(2−x)dx
32. ∫3x+4x3−2x−4dx (Hint: Use the rational root theorem.)
Show Solution
ln|x−2|−12ln|x2+2x+2|+C
Use substitution to convert the integrals to integrals of rational functions. Then use partial fractions to evaluate the integrals.
33. ∫10ex36−e2xdx (Give the exact answer and the decimal equivalent. Round to five decimal places.)
34. ∫exdxe2x−exdx
Show Solution
-x+ln|1−ex|+C
35. ∫sinxdx1−cos2x
36. ∫sinxcos2x+cosx−6dx
Show Solution
15ln|cosx+3cosx−2|+C
38. ∫dt(et−e-t)2
Show Solution
12−2e2t+C
39. ∫1+ex1−exdx
Show Solution
2√1+x−2ln|1+√1+x|+C
42. ∫cosxsinx(1−sinx)dx
Show Solution
ln|sinx1−sinx|+C
43. ∫ex(e2x−4)2dx
44. 2∫11x2√4−x2dx
Show Solution
x−ln(1+ex)+C
Use the given substitution to convert the integral to an integral of a rational function, then evaluate.
47. ∫1t−3√tdtt=x3
48. ∫1√x+3√xdx;x=u6
Show Solution
6x16−3x13+2√x−6ln(1+x16)+C
49. Graph the curve y=x1+x over the interval [0,5]. Then, find the area of the region bounded by the curve, the x-axis, and the line x=4.

50. Find the volume of the solid generated when the region bounded by y=1√x(3−x), y=0, x=1, and x=2 is revolved about the x-axis.
Show Solution
43πarctanh[13]=13πln4
51. The velocity of a particle moving along a line is a function of time given by v(t)=88t2t2+1. Find the distance that the particle has traveled after t=5 sec.
Solve the initial-value problem for x as a function of t.
52. (t2−7t+12)dxdt=1,(t>4,x(5)=0)
Show Solution
x=-ln|t−3|+ln|t−4|+ln2
53. (t+5)dxdt=x2+1,t>-5,x(1)=tan1
54. (2t3−2t2+t−1)dxdt=3,x(2)=0
Show Solution
x=ln|t−1|−√2arctan(√2t)−12ln(t2+12)+√2arctan(2√2)+12ln4.5
55. Find the x-coordinate of the centroid of the area bounded by y(x2−9)=1, y=0,x=4,and x=5. (Round the answer to two decimal places.)
56. Find the volume generated by revolving the area bounded by y=1x3+7x2+6xx=1,x=7,and y=0 about the y-axis.
Show Solution
25πln2813
57. Find the area bounded by y=x−12x2−8x−20, y=0,x=2,and x=4. (Round the answer to the nearest hundredth.)
58. Evaluate the integral ∫dxx3+1.
Show Solution
arctan[−1+2x√3]√3+13ln|1+x|−16ln|1−x+x2|+C
For the following problems, use the substitutions tan(x2)=t, dx=21+t2dt, sinx=2t1+t2, and cosx=1−t21+t2.
59. ∫dx3−5sinx
60. Find the area under the curve y=11+sinx between x=0 and x=π. (Assume the dimensions are in inches.)
61. Given tan(x2)=t, derive the formulas dx=21+t2dt, sinx=2t1+t2, and cosx=1−t21+t2.
62. Evaluate ∫3√x−8xdx.
Show Solution
3(−8+x)13 −2√3arctan[−1+(−8+x)13√3] −2ln[2+(−8+x)13] +ln[4−2(−8+x)13+(−8+x)23]+C
Candela Citations
CC licensed content, Shared previously