Essential Concepts
- We can use numerical integration to estimate the values of definite integrals when a closed form of the integral is difficult to find or when an approximate value only of the definite integral is needed.
- The most commonly used techniques for numerical integration are the midpoint rule, trapezoidal rule, and Simpson’s rule.
- The midpoint rule approximates the definite integral using rectangular regions whereas the trapezoidal rule approximates the definite integral using trapezoidal approximations.
- Simpson’s rule approximates the definite integral by first approximating the original function using piecewise quadratic functions.
Key Equations
- Midpoint rule
[latex]{M}_{n}=\displaystyle\sum _{i=1}^{n}f\left({m}_{i}\right)\Delta x[/latex] - Trapezoidal rule
[latex]{T}_{n}=\frac{1}{2}\Delta x\left(f\left({x}_{0}\right)+2f\left({x}_{1}\right)+2f\left({x}_{2}\right)+\cdots +2f\left({x}_{n - 1}\right)+f\left({x}_{n}\right)\right)[/latex] - Simpson’s rule
[latex]{S}_{n}=\frac{\Delta x}{3}\left(f\left({x}_{0}\right)+4f\left({x}_{1}\right)+2f\left({x}_{2}\right)+4f\left({x}_{3}\right)+2f\left({x}_{4}\right)+4f\left({x}_{5}\right)+\cdots +2f\left({x}_{n - 2}\right)+4f\left({x}_{n - 1}\right)+f\left({x}_{n}\right)\right)[/latex] - Error bound for midpoint rule
[latex]\text{Error in }{M}_{n}\le \frac{M{\left(b-a\right)}^{3}}{24{n}^{2}}[/latex] - Error bound for trapezoidal rule
[latex]\text{Error in }{T}_{n}\le \frac{M{\left(b-a\right)}^{3}}{12{n}^{2}}[/latex] - Error bound for Simpson’s rule
[latex]\text{Error in }{S}_{n}\le \frac{M{\left(b-a\right)}^{5}}{180{n}^{4}}[/latex]
Glossary
- absolute error
- if [latex]B[/latex] is an estimate of some quantity having an actual value of [latex]A[/latex], then the absolute error is given by [latex]|A-B|[/latex]
- midpoint rule
- a rule that uses a Riemann sum of the form [latex]{M}_{n}=\displaystyle\sum _{i=1}^{n}f\left({m}_{i}\right)\Delta x[/latex], where [latex]{m}_{i}[/latex] is the midpoint of the ith subinterval to approximate [latex]{\displaystyle\int }_{a}^{b}f\left(x\right)dx[/latex]
- numerical integration
- the variety of numerical methods used to estimate the value of a definite integral, including the midpoint rule, trapezoidal rule, and Simpson’s rule
- relative error
- error as a percentage of the absolute value, given by [latex]|\frac{A-B}{A}|=|\frac{A-B}{A}|\cdot 100\text{%}[/latex]
- Simpson’s rule
- a rule that approximates [latex]{\displaystyle\int }_{a}^{b}f\left(x\right)dx[/latex] using the integrals of a piecewise quadratic function. The approximation [latex]{S}_{n}[/latex] to [latex]{\displaystyle\int }_{a}^{b}f\left(x\right)dx[/latex] is given by [latex]{S}_{n}=\frac{\Delta x}{3}\left(\begin{array}{c}f\left({x}_{0}\right)+4f\left({x}_{1}\right)+2f\left({x}_{2}\right)+4f\left({x}_{3}\right)+2f\left({x}_{4}\right)+4f\left({x}_{5}\right)\\ +\cdots +2f\left({x}_{n - 2}\right)+4f\left({x}_{n - 1}\right)+f\left({x}_{n}\right)\end{array}\right)[/latex] trapezoidal rule a rule that approximates [latex]{\displaystyle\int }_{a}^{b}f\left(x\right)dx[/latex] using trapezoids
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction