Essential Concepts
- If [latex]\underset{n\to \infty }{\text{lim}}{a}_{n}\ne 0[/latex], then the series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] diverges.
- If [latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=0[/latex], the series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] may converge or diverge.
- If [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] is a series with positive terms [latex]{a}_{n}[/latex] and [latex]f[/latex] is a continuous, decreasing function such that [latex]f\left(n\right)={a}_{n}[/latex] for all positive integers [latex]n[/latex], then
[latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}\text{and}{\displaystyle\int }_{1}^{\infty }f\left(x\right)dx[/latex]
either both converge or both diverge. Furthermore, if [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges, then the [latex]N\text{th}[/latex] partial sum approximation [latex]{S}_{N}[/latex] is accurate up to an error [latex]{R}_{N}[/latex] where [latex]{\displaystyle\int }_{N+1}^{\infty }f\left(x\right)dx<{R}_{N}<{\displaystyle\int }_{N}^{\infty }f\left(x\right)dx[/latex]. - The p-series [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{n}^{p}}[/latex] converges if [latex]p>1[/latex] and diverges if [latex]p\le 1[/latex].
Key Equations
- Divergence test
[latex]\text{If }{a}_{n}\nrightarrow 0\text{ as }n\to \infty ,\displaystyle\sum _{n=1}^{\infty }{a}_{n}\text{ diverges}[/latex]. - p-series
[latex]{\displaystyle\sum _{n=1}^{\infty}} \dfrac{1}{n^{p}} \bigg\{ \begin{array}{l}\text{ converges if }p>1\\ \text{ diverges if }p\le 1\end{array}[/latex] - Remainder estimate from the integral test
[latex]{\displaystyle\int }_{N+1}^{\infty }f\left(x\right)dx<{R}_{N}<{\displaystyle\int }_{N}^{\infty }f\left(x\right)dx[/latex]
Glossary
- divergence test
- if [latex]\underset{n\to \infty }{\text{lim}}{a}_{n}\ne 0[/latex], then the series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] diverges
- integral test
- for a series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] with positive terms [latex]{a}_{n}[/latex], if there exists a continuous, decreasing function [latex]f[/latex] such that [latex]f\left(n\right)={a}_{n}[/latex] for all positive integers [latex]n[/latex], then
[latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}\text{ and }{\displaystyle\int }_{1}^{\infty }f\left(x\right)dx[/latex]either both converge or both diverge
- p-series
- a series of the form [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{n}^{p}}[/latex]
- remainder estimate
- for a series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] with positive terms [latex]{a}_{n}[/latex] and a continuous, decreasing function [latex]f[/latex] such that [latex]f\left(n\right)={a}_{n}[/latex] for all positive integers [latex]n[/latex], the remainder [latex]{R}_{N}=\displaystyle\sum _{n=1}^{\infty }{a}_{n}-\displaystyle\sum _{n=1}^{N}{a}_{n}[/latex] satisfies the following estimate:
[latex]{\displaystyle\int }_{N+1}^{\infty }f\left(x\right)dx<{R}_{N}<{\displaystyle\int }_{N}^{\infty }f\left(x\right)dx[/latex]
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction