Essential Concepts
- The comparison tests are used to determine convergence or divergence of series with positive terms.
- When using the comparison tests, a series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] is often compared to a geometric or p-series.
Glossary
- comparison test
- if [latex]0\le {a}_{n}\le {b}_{n}[/latex] for all [latex]n\ge N[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{b}_{n}[/latex] converges, then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges; if [latex]{a}_{n}\ge {b}_{n}\ge 0[/latex] for all [latex]n\ge N[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{b}_{n}[/latex] diverges, then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] diverges
- limit comparison test
- suppose [latex]{a}_{n},{b}_{n}\ge 0[/latex] for all [latex]n\ge 1[/latex]. If [latex]\underset{n\to \infty }{\text{lim}}\frac{{a}_{n}}{{b}_{n}}\to L\ne 0[/latex], then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{b}_{n}[/latex] both converge or both diverge; if [latex]\underset{n\to \infty }{\text{lim}}\frac{{a}_{n}}{{b}_{n}}\to 0[/latex] and [latex]\displaystyle\sum _{n=1}^{\infty }{b}_{n}[/latex] converges, then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] converges. If [latex]\underset{n\to \infty }{\text{lim}}\frac{{a}_{n}}{{b}_{n}}\to \infty[/latex], and [latex]\displaystyle\sum _{n=1}^{\infty }{b}_{n}[/latex] diverges, then [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] diverges
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction