Summary of Area and Arc Length in Polar Coordinates

Essential Concepts

  • The area of a region in polar coordinates defined by the equation [latex]r=f\left(\theta \right)[/latex] with [latex]\alpha \le \theta \le \beta[/latex] is given by the integral [latex]A=\frac{1}{2}{{\displaystyle\int }_{\alpha }^{\beta }\left[f\left(\theta \right)\right]}^{2}d\theta[/latex].
  • To find the area between two curves in the polar coordinate system, first find the points of intersection, then subtract the corresponding areas.
  • The arc length of a polar curve defined by the equation [latex]r=f\left(\theta \right)[/latex] with [latex]\alpha \le \theta \le \beta[/latex] is given by the integral [latex]L={\displaystyle\int }_{\alpha }^{\beta }\sqrt{{\left[f\left(\theta \right)\right]}^{2}+{\left[{f}^{\prime }\left(\theta \right)\right]}^{2}}d\theta ={\displaystyle\int }_{\alpha }^{\beta }\sqrt{{r}^{2}+{\left(\frac{dr}{d\theta }\right)}^{2}}d\theta[/latex].

Key Equations

  • Area of a region bounded by a polar curve

    [latex]A=\frac{1}{2}{\displaystyle\int }_{\alpha }^{\beta }{\left[f\left(\theta \right)\right]}^{2}d\theta =\frac{1}{2}{\displaystyle\int }_{\alpha }^{\beta }{r}^{2}d\theta[/latex]
  • Arc length of a polar curve

    [latex]L={\displaystyle\int }_{\alpha }^{\beta }\sqrt{{\left[f\left(\theta \right)\right]}^{2}+{\left[{f}^{\prime }\left(\theta \right)\right]}^{2}}d\theta ={\displaystyle\int }_{\alpha }^{\beta }\sqrt{{r}^{2}+{\left(\frac{dr}{d\theta }\right)}^{2}}d\theta[/latex]