We have seen that a sequence is an ordered set of terms. If you add these terms together, you get a series. In this section we define an infinite series and show how series are related to sequences. We also define what it means for a series to converge or diverge. We introduce one of the most important types of series: the geometric series. We will use geometric series in the next chapter to write certain functions as polynomials with an infinite number of terms. This process is important because it allows us to evaluate, differentiate, and integrate complicated functions by using polynomials that are easier to handle. We also discuss the harmonic series, arguably the most interesting divergent series because it just fails to converge.
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction