Problem Set: Area and Arc Length in Polar Coordinates

For the following exercises, determine a definite integral that represents the area.

1. Region enclosed by r=4

2. Region enclosed by r=3sinθ

3. Region in the first quadrant within the cardioid r=1+sinθ

4. Region enclosed by one petal of r=8sin(2θ)

5. Region enclosed by one petal of r=cos(3θ)

6. Region below the polar axis and enclosed by r=1sinθ

7. Region in the first quadrant enclosed by r=2cosθ

8. Region enclosed by the inner loop of r=23sinθ

9. Region enclosed by the inner loop of r=34cosθ

10. Region enclosed by r=12cosθ and outside the inner loop

11. Region common to r=3sinθ and r=2sinθ

12. Region common to r=2 and r=4cosθ

13. Region common to r=3cosθ and r=3sinθ

For the following exercises, find the area of the described region.

14. Enclosed by r=6sinθ

15. Above the polar axis enclosed by r=2+sinθ

16. Below the polar axis and enclosed by r=2cosθ

17. Enclosed by one petal of r=4cos(3θ)

18. Enclosed by one petal of r=3cos(2θ)

19. Enclosed by r=1+sinθ

20. Enclosed by the inner loop of r=3+6cosθ

21. Enclosed by r=2+4cosθ and outside the inner loop

22. Common interior of r=4sin(2θ)and r=2

23. Common interior of r=32sinθ and r=3+2sinθ

24. Common interior of r=6sinθ and r=3

25. Inside r=1+cosθ and outside r=cosθ

26. Common interior of r=2+2cosθ and r=2sinθ

For the following exercises, find a definite integral that represents the arc length.

27. r=4cosθ on the interval 0θπ2

28. r=1+sinθ on the interval 0θ2π

29. r=2secθ on the interval 0θπ3

30. r=eθ on the interval 0θ1

For the following exercises, find the length of the curve over the given interval.

31. r=6 on the interval 0θπ2

32. r=e3θ on the interval 0θ2

33. r=6cosθ on the interval 0θπ2

34. r=8+8cosθ on the interval 0θπ

35. r=1sinθ on the interval 0θ2π

For the following exercises, use the integration capabilities of a calculator to approximate the length of the curve.

36. [T] r=3θ on the interval 0θπ2

37. [T] r=2θ on the interval πθ2π

38. [T] r=sin2(θ2) on the interval 0θπ

39. [T] r=2θ2 on the interval 0θπ

40. [T] r=sin(3cosθ) on the interval 0θπ

For the following exercises, use the familiar formula from geometry to find the area of the region described and then confirm by using the definite integral.

41. r=3sinθ on the interval 0θπ

42. r=sinθ+cosθ on the interval 0θπ

43. r=6sinθ+8cosθ on the interval 0θπ

For the following exercises, use the familiar formula from geometry to find the length of the curve and then confirm using the definite integral.

44. r=3sinθ on the interval 0θπ

45. r=sinθ+cosθ on the interval 0θπ

46. r=6sinθ+8cosθ on the interval 0θπ

47. Verify that if y=rsinθ=f(θ)sinθ then dydθ=f(θ)sinθ+f(θ)cosθ.

For the following exercises, find the slope of a tangent line to a polar curve r=f(θ). Let x=rcosθ=f(θ)cosθ and y=rsinθ=f(θ)sinθ, so the polar equation r=f(θ) is now written in parametric form.

48. Use the definition of the derivative dydx=dydθdxdθ and the product rule to derive the derivative of a polar equation.

49. r=1sinθ; (12,π6)

50. r=4cosθ; (2,π3)

51. r=8sinθ; (4,5π6)

52. r=4+sinθ; (3,3π2)

53. r=6+3cosθ; (3,π)

54. r=4cos(2θ); tips of the leaves

55. r=2sin(3θ); tips of the leaves

56. r=2θ; (π2,π4)

57. Find the points on the interval -πθπ at which the cardioid r=1cosθ has a vertical or horizontal tangent line.

58. For the cardioid r=1+sinθ, find the slope of the tangent line when θ=π3.

For the following exercises, find the slope of the tangent line to the given polar curve at the point given by the value of θ.

59. r=3cosθ,θ=π3

60. r=θ, θ=π2

61. r=lnθ, θ=e

62. [T] Use technology: r=2+4cosθ at θ=π6

For the following exercises, find the points at which the following polar curves have a horizontal or vertical tangent line.

63. r=4cosθ

64. r2=4cos(2θ)

65. r=2sin(2θ)

66. The cardioid r=1+sinθ

67. Show that the curve r=sinθtanθ (called a cissoid of Diocles) has the line x=1 as a vertical asymptote.