Problem Set: Area and Arc Length in Polar Coordinates

For the following exercises, determine a definite integral that represents the area.

1. Region enclosed by [latex]r=4[/latex]

2. Region enclosed by [latex]r=3\sin\theta [/latex]

3. Region in the first quadrant within the cardioid [latex]r=1+\sin\theta [/latex]

4. Region enclosed by one petal of [latex]r=8\sin\left(2\theta \right)[/latex]

5. Region enclosed by one petal of [latex]r=\cos\left(3\theta \right)[/latex]

6. Region below the polar axis and enclosed by [latex]r=1-\sin\theta [/latex]

7. Region in the first quadrant enclosed by [latex]r=2-\cos\theta [/latex]

8. Region enclosed by the inner loop of [latex]r=2 - 3\sin\theta [/latex]

9. Region enclosed by the inner loop of [latex]r=3 - 4\cos\theta [/latex]

10. Region enclosed by [latex]r=1 - 2\cos\theta [/latex] and outside the inner loop

11. Region common to [latex]r=3\sin\theta \text{ and }r=2-\sin\theta [/latex]

12. Region common to [latex]r=2\text{ and }r=4\cos\theta [/latex]

13. Region common to [latex]r=3\cos\theta \text{ and }r=3\sin\theta [/latex]

For the following exercises, find the area of the described region.

14. Enclosed by [latex]r=6\sin\theta [/latex]

15. Above the polar axis enclosed by [latex]r=2+\sin\theta [/latex]

16. Below the polar axis and enclosed by [latex]r=2-\cos\theta [/latex]

17. Enclosed by one petal of [latex]r=4\cos\left(3\theta \right)[/latex]

18. Enclosed by one petal of [latex]r=3\cos\left(2\theta \right)[/latex]

19. Enclosed by [latex]r=1+\sin\theta [/latex]

20. Enclosed by the inner loop of [latex]r=3+6\cos\theta [/latex]

21. Enclosed by [latex]r=2+4\cos\theta [/latex] and outside the inner loop

22. Common interior of [latex]r=4\sin\left(2\theta \right)\text{and }r=2[/latex]

23. Common interior of [latex]r=3 - 2\sin\theta \text{ and }r=-3+2\sin\theta [/latex]

24. Common interior of [latex]r=6\sin\theta \text{ and }r=3[/latex]

25. Inside [latex]r=1+\cos\theta [/latex] and outside [latex]r=\cos\theta [/latex]

26. Common interior of [latex]r=2+2\cos\theta \text{ and }r=2\sin\theta [/latex]

For the following exercises, find a definite integral that represents the arc length.

27. [latex]r=4\cos\theta \text{ on the interval }0\le \theta \le \frac{\pi }{2}[/latex]

28. [latex]r=1+\sin\theta [/latex] on the interval [latex]0\le \theta \le 2\pi [/latex]

29. [latex]r=2\sec\theta \text{ on the interval }0\le \theta \le \frac{\pi }{3}[/latex]

30. [latex]r={e}^{\theta }\text{ on the interval }0\le \theta \le 1[/latex]

For the following exercises, find the length of the curve over the given interval.

31. [latex]r=6\text{ on the interval }0\le \theta \le \frac{\pi }{2}[/latex]

32. [latex]r={e}^{3\theta }\text{ on the interval }0\le \theta \le 2[/latex]

33. [latex]r=6\cos\theta \text{ on the interval }0\le \theta \le \frac{\pi }{2}[/latex]

34. [latex]r=8+8\cos\theta \text{ on the interval }0\le \theta \le \pi [/latex]

35. [latex]r=1-\sin\theta \text{ on the interval }0\le \theta \le 2\pi [/latex]

For the following exercises, use the integration capabilities of a calculator to approximate the length of the curve.

36. [T] [latex]r=3\theta \text{ on the interval }0\le \theta \le \frac{\pi }{2}[/latex]

37. [T] [latex]r=\frac{2}{\theta }\text{ on the interval }\pi \le \theta \le 2\pi [/latex]

38. [T] [latex]r={\sin}^{2}\left(\frac{\theta }{2}\right)\text{ on the interval }0\le \theta \le \pi [/latex]

39. [T] [latex]r=2{\theta }^{2}\text{ on the interval }0\le \theta \le \pi [/latex]

40. [T] [latex]r=\sin\left(3\cos\theta \right)\text{ on the interval }0\le \theta \le \pi [/latex]

For the following exercises, use the familiar formula from geometry to find the area of the region described and then confirm by using the definite integral.

41. [latex]r=3\sin\theta \text{ on the interval }0\le \theta \le \pi [/latex]

42. [latex]r=\sin\theta +\cos\theta \text{ on the interval }0\le \theta \le \pi [/latex]

43. [latex]r=6\sin\theta +8\cos\theta \text{ on the interval }0\le \theta \le \pi [/latex]

For the following exercises, use the familiar formula from geometry to find the length of the curve and then confirm using the definite integral.

44. [latex]r=3\sin\theta \text{ on the interval }0\le \theta \le \pi [/latex]

45. [latex]r=\sin\theta +\cos\theta \text{ on the interval }0\le \theta \le \pi [/latex]

46. [latex]r=6\sin\theta +8\cos\theta \text{ on the interval }0\le \theta \le \pi [/latex]

47. Verify that if [latex]y=r\sin\theta =f\left(\theta \right)\sin\theta [/latex] then [latex]\frac{dy}{d\theta }=f\prime \left(\theta \right)\sin\theta +f\left(\theta \right)\cos\theta [/latex].

For the following exercises, find the slope of a tangent line to a polar curve [latex]r=f\left(\theta \right)[/latex]. Let [latex]x=r\cos\theta =f\left(\theta \right)\cos\theta [/latex] and [latex]y=r\sin\theta =f\left(\theta \right)\sin\theta [/latex], so the polar equation [latex]r=f\left(\theta \right)[/latex] is now written in parametric form.

48. Use the definition of the derivative [latex]\frac{dy}{dx}=\frac{\frac{dy}{d}\theta }{\frac{dx}{d}\theta }[/latex] and the product rule to derive the derivative of a polar equation.

49. [latex]r=1-\sin\theta [/latex]; [latex]\left(\frac{1}{2},\frac{\pi }{6}\right)[/latex]

50. [latex]r=4\cos\theta [/latex]; [latex]\left(2,\frac{\pi }{3}\right)[/latex]

51. [latex]r=8\sin\theta [/latex]; [latex]\left(4,\frac{5\pi }{6}\right)[/latex]

52. [latex]r=4+\sin\theta [/latex]; [latex]\left(3,\frac{3\pi }{2}\right)[/latex]

53. [latex]r=6+3\cos\theta [/latex]; [latex]\left(3,\pi \right)[/latex]

54. [latex]r=4\cos\left(2\theta \right)[/latex]; tips of the leaves

55. [latex]r=2\sin\left(3\theta \right)[/latex]; tips of the leaves

56. [latex]r=2\theta [/latex]; [latex]\left(\frac{\pi }{2},\frac{\pi }{4}\right)[/latex]

57. Find the points on the interval [latex]\text{-}\pi \le \theta \le \pi [/latex] at which the cardioid [latex]r=1-\cos\theta [/latex] has a vertical or horizontal tangent line.

58. For the cardioid [latex]r=1+\sin\theta [/latex], find the slope of the tangent line when [latex]\theta =\frac{\pi }{3}[/latex].

For the following exercises, find the slope of the tangent line to the given polar curve at the point given by the value of [latex]\theta [/latex].

59. [latex]r=3\cos\theta ,\theta =\frac{\pi }{3}[/latex]

60. [latex]r=\theta [/latex], [latex]\theta =\frac{\pi }{2}[/latex]

61. [latex]r=\text{ln}\theta [/latex], [latex]\theta =e[/latex]

62. [T] Use technology: [latex]r=2+4\cos\theta [/latex] at [latex]\theta =\frac{\pi }{6}[/latex]

For the following exercises, find the points at which the following polar curves have a horizontal or vertical tangent line.

63. [latex]r=4\cos\theta [/latex]

64. [latex]{r}^{2}=4\cos\left(2\theta \right)[/latex]

65. [latex]r=2\sin\left(2\theta \right)[/latex]

66. The cardioid [latex]r=1+\sin\theta [/latex]

67. Show that the curve [latex]r=\sin\theta \tan\theta [/latex] (called a cissoid of Diocles) has the line [latex]x=1[/latex] as a vertical asymptote.