Problem Set: Basics of Differential Equations

Determine the order of the following differential equations.

1. [latex]{y}^{\prime }+y=3{y}^{2}[/latex]

2. [latex]{\left({y}^{\prime }\right)}^{2}={y}^{\prime }+2y[/latex]

3. [latex]y^{\prime\prime\prime}+y^{\prime\prime}{y}^{\prime }=3{x}^{2}[/latex]

4. [latex]{y}^{\prime }=y^{\prime\prime}+3{t}^{2}[/latex]

5. [latex]\frac{dy}{dt}=t[/latex]

6. [latex]\frac{dy}{dx}+\frac{{d}^{2}y}{d{x}^{2}}=3{x}^{4}[/latex]

7. [latex]{\left(\frac{dy}{dt}\right)}^{2}+8\frac{dy}{dt}+3y=4t[/latex]

Verify that the following functions are solutions to the given differential equation.

8. [latex]y=\frac{{x}^{3}}{3}[/latex] solves [latex]{y}^{\prime }={x}^{2}[/latex]
9. [latex]y=2{e}^{\text{-}x}+x - 1[/latex] solves [latex]{y}^{\prime }=x-y[/latex]
10. [latex]y={e}^{3x}-\frac{{e}^{x}}{2}[/latex] solves [latex]{y}^{\prime }=3y+{e}^{x}[/latex]
11. [latex]y=\frac{1}{1-x}[/latex] solves [latex]{y}^{\prime }={y}^{2}[/latex]
12. [latex]y={e}^{\frac{{x}^{2}}{2}}[/latex] solves [latex]{y}^{\prime }=xy[/latex]
13. [latex]y=4+\text{ln}x[/latex] solves [latex]x{y}^{\prime }=1[/latex]
14. [latex]y=3-x+x\text{ln}x[/latex] solves [latex]{y}^{\prime }=\text{ln}x[/latex]
15. [latex]y=2{e}^{x}-x - 1[/latex] solves [latex]{y}^{\prime }=y+x[/latex]
16. [latex]y={e}^{x}+\frac{\sin{x}}{2}-\frac{\cos{x}}{2}[/latex] solves [latex]{y}^{\prime }=\cos{x}+y[/latex]
17. [latex]y=\pi {e}^{\text{-}\cos{x}}[/latex] solves [latex]{y}^{\prime }=y\sin{x}[/latex]

Verify the following general solutions and find the particular solution.

18. Find the particular solution to the differential equation [latex]{y}^{\prime }=4{x}^{2}[/latex] that passes through [latex]\left(-3,-30\right)[/latex], given that [latex]y=C+\frac{4{x}^{3}}{3}[/latex] is a general solution.

19. Find the particular solution to the differential equation [latex]{y}^{\prime }=3{x}^{3}[/latex] that passes through [latex]\left(1,4.75\right)[/latex], given that [latex]y=C+\frac{3{x}^{4}}{4}[/latex] is a general solution.

20. Find the particular solution to the differential equation [latex]{y}^{\prime }=3{x}^{2}y[/latex] that passes through [latex]\left(0,12\right)[/latex], given that [latex]y=C{e}^{{x}^{3}}[/latex] is a general solution.

21. Find the particular solution to the differential equation [latex]{y}^{\prime }=2xy[/latex] that passes through [latex]\left(0,\frac{1}{2}\right)[/latex], given that [latex]y=C{e}^{{x}^{2}}[/latex] is a general solution.

22. Find the particular solution to the differential equation [latex]{y}^{\prime }={\left(2xy\right)}^{2}[/latex] that passes through [latex]\left(1,-\frac{1}{2}\right)[/latex], given that [latex]y=-\frac{3}{C+4{x}^{3}}[/latex] is a general solution.

23. Find the particular solution to the differential equation [latex]{y}^{\prime }{x}^{2}=y[/latex] that passes through [latex]\left(1,\frac{2}{e}\right)[/latex], given that [latex]y=C{e}^{\frac{\text{-}1}{x}}[/latex] is a general solution.

24. Find the particular solution to the differential equation [latex]8\frac{dx}{dt}=-2\cos\left(2t\right)-\cos\left(4t\right)[/latex] that passes through [latex]\left(\pi ,\pi \right)[/latex], given that [latex]x=C-\frac{1}{8}\sin\left(2t\right)-\frac{1}{32}\sin\left(4t\right)[/latex] is a general solution.

25. Find the particular solution to the differential equation [latex]\frac{du}{dt}=\tan{u}[/latex] that passes through [latex]\left(1,\frac{\pi }{2}\right)[/latex], given that [latex]u={\sin}^{-1}\left({e}^{C+t}\right)[/latex] is a general solution.

26. Find the particular solution to the differential equation [latex]\frac{dy}{dt}={e}^{\left(t+y\right)}[/latex] that passes through [latex]\left(1,0\right)[/latex], given that [latex]y=\text{-}\text{ln}\left(C-{e}^{t}\right)[/latex] is a general solution.

27. Find the particular solution to the differential equation [latex]{y}^{\prime }\left(1-{x}^{2}\right)=1+y[/latex] that passes through [latex]\left(0,-2\right)[/latex], given that [latex]y=C\frac{\sqrt{x+1}}{\sqrt{1-x}}-1[/latex] is a general solution.

For the following problems, find the general solution to the differential equation.

28. [latex]{y}^{\prime }=3x+{e}^{x}[/latex]

29. [latex]{y}^{\prime }=\text{ln}x+\tan{x}[/latex]

30. [latex]{y}^{\prime }=\sin{x}{e}^{\cos{x}}[/latex]

31. [latex]{y}^{\prime }={4}^{x}[/latex]

32. [latex]{y}^{\prime }={\sin}^{-1}\left(2x\right)[/latex]

33. [latex]{y}^{\prime }=2t\sqrt{{t}^{2}+16}[/latex]

34. [latex]{x}^{\prime }=\text{coth}t+\text{ln}t+3{t}^{2}[/latex]

35. [latex]{x}^{\prime }=t\sqrt{4+t}[/latex]

36. [latex]{y}^{\prime }=y[/latex]

37. [latex]{y}^{\prime }=\frac{y}{x}[/latex]

Solve the following initial-value problems starting from [latex]y\left(t=0\right)=1[/latex] and [latex]y\left(t=0\right)=-1[/latex]. Draw both solutions on the same graph.

38. [latex]\frac{dy}{dt}=2t[/latex]

39. [latex]\frac{dy}{dt}=\text{-}t[/latex]

40. [latex]\frac{dy}{dt}=2y[/latex]

41. [latex]\frac{dy}{dt}=\text{-}y[/latex]

42. [latex]\frac{dy}{dt}=2[/latex]

Solve the following initial-value problems starting from [latex]{y}_{0}=10[/latex]. At what time does [latex]y[/latex] increase to [latex]100[/latex] or drop to [latex]1?[/latex]

43. [latex]\frac{dy}{dt}=4t[/latex]

44. [latex]\frac{dy}{dt}=4y[/latex]

45. [latex]\frac{dy}{dt}=-2y[/latex]

46. [latex]\frac{dy}{dt}={e}^{4t}[/latex]

47. [latex]\frac{dy}{dt}={e}^{-4t}[/latex]

Recall that a family of solutions includes solutions to a differential equation that differ by a constant. For the following problems, use your calculator to graph a family of solutions to the given differential equation. Use initial conditions from [latex]y\left(t=0\right)=-10[/latex] to [latex]y\left(t=0\right)=10[/latex] increasing by [latex]2[/latex]. Is there some critical point where the behavior of the solution begins to change?

48. [T] [latex]{y}^{\prime }=y\left(x\right)[/latex]

49. [T] [latex]x{y}^{\prime }=y[/latex]

50. [T] [latex]{y}^{\prime }={t}^{3}[/latex]

51. [T] [latex]{y}^{\prime }=x+y[/latex] (Hint: [latex]y=C{e}^{x}-x - 1[/latex] is the general solution)

52. [T] [latex]{y}^{\prime }=x\text{ln}x+\sin{x}[/latex]

53. Find the general solution to describe the velocity of a ball of mass [latex]1\text{lb}[/latex] that is thrown upward at a rate [latex]a[/latex] ft/sec.

54. In the preceding problem, if the initial velocity of the ball thrown into the air is [latex]a=25[/latex] ft/s, write the particular solution to the velocity of the ball. Solve to find the time when the ball hits the ground.

55. You throw two objects with differing masses [latex]{m}_{1}[/latex] and [latex]{m}_{2}[/latex] upward into the air with the same initial velocity [latex]a[/latex] ft/s. What is the difference in their velocity after [latex]1[/latex] second?

56. [T] You throw a ball of mass [latex]1[/latex] kilogram upward with a velocity of [latex]a=25[/latex] m/s on Mars, where the force of gravity is [latex]g=-3.711[/latex] m/s2. Use your calculator to approximate how much longer the ball is in the air on Mars than on Earth, where [latex]g= -9.8 m/s^{2}[/latex].

57. [T] For the previous problem, use your calculator to approximate how much higher the ball went on Mars, where [latex]g= -9.8 m/s^{2}[/latex].

58. [T] A car on the freeway accelerates according to [latex]a=15\cos\left(\pi t\right)[/latex], where [latex]t[/latex] is measured in hours. Set up and solve the differential equation to determine the velocity of the car if it has an initial speed of [latex]51[/latex] mph. After [latex]40[/latex] minutes of driving, what is the driver’s velocity?

59. [T] For the car in the preceding problem, find the expression for the distance the car has traveled in time [latex]t[/latex], assuming an initial distance of [latex]0[/latex]. How long does it take the car to travel [latex]100[/latex] miles? Round your answer to hours and minutes.

60. [T] For the previous problem, find the total distance traveled in the first hour.

61. Substitute [latex]y=B{e}^{3t}[/latex] into [latex]{y}^{\prime }-y=8{e}^{3t}[/latex] to find a particular solution.

62. Substitute [latex]y=a\cos\left(2t\right)+b\sin\left(2t\right)[/latex] into [latex]{y}^{\prime }+y=4\sin\left(2t\right)[/latex] to find a particular solution.

63. Substitute [latex]y=a+bt+c{t}^{2}[/latex] into [latex]{y}^{\prime }+y=1+{t}^{2}[/latex] to find a particular solution.

64. Substitute [latex]y=a{e}^{t}\cos{t}+b{e}^{t}\sin{t}[/latex] into [latex]{y}^{\prime }=2{e}^{t}\cos{t}[/latex] to find a particular solution.

65. Solve [latex]{y}^{\prime }={e}^{kt}[/latex] with the initial condition [latex]y\left(0\right)=0[/latex] and solve [latex]{y}^{\prime }=1[/latex] with the same initial condition. As [latex]k[/latex] approaches [latex]0[/latex], what do you notice?