Learning Outcomes
- Use the limit comparison test to determine convergence of a series
The comparison test works nicely if we can find a comparable series satisfying the hypothesis of the test. However, sometimes finding an appropriate series can be difficult. Consider the series
It is natural to compare this series with the convergent series
However, this series does not satisfy the hypothesis necessary to use the comparison test because
for all integers n≥2n≥2. Although we could look for a different series with which to compare ∞∑n=21(n2−1)∞∑n=21(n2−1), instead we show how we can use the limit comparison test to compare
Let us examine the idea behind the limit comparison test. Consider two series ∞∑n=1an∞∑n=1an and ∞∑n=1bn∞∑n=1bn. with positive terms anandbnanandbn and evaluate
If
then, for nn sufficiently large, an≈Lbnan≈Lbn. Therefore, either both series converge or both series diverge. For the series ∞∑n=21(n2−1)∞∑n=21(n2−1) and ∞∑n=21n2∞∑n=21n2, we see that
Since ∞∑n=21n2∞∑n=21n2 converges, we conclude that
converges.
The limit comparison test can be used in two other cases. Suppose
In this case, {anbn}{anbn} is a bounded sequence. As a result, there exists a constant MM such that an≤Mbnan≤Mbn. Therefore, if ∞∑n=1bn∞∑n=1bn converges, then ∞∑n=1an∞∑n=1an converges. On the other hand, suppose
In this case,{anbn}{anbn} is an unbounded sequence. Therefore, for every constant MM there exists an integer NN such that an≥Mbnan≥Mbn for all n≥Nn≥N. Therefore, if ∞∑n=1bn∞∑n=1bn diverges, then ∞∑n=1an∞∑n=1an diverges as well.
Theorem: Limit Comparison Test
Let an,bn≥0an,bn≥0 for all n≥1n≥1.
- If limn→∞anbn=L≠0limn→∞anbn=L≠0, then ∞∑n=1an∞∑n=1an and ∞∑n=1bn∞∑n=1bn both converge or both diverge.
- If limn→∞anbn=0limn→∞anbn=0 and ∞∑n=1bn∞∑n=1bn converges, then ∞∑n=1an∞∑n=1an converges.
- If limn→∞anbn=∞limn→∞anbn=∞ and ∞∑n=1bn∞∑n=1bn diverges, then ∞∑n=1an∞∑n=1an diverges.
Note that if anbn→0anbn→0 and ∞∑n=1bn∞∑n=1bn diverges, the limit comparison test gives no information. Similarly, if anbn→∞anbn→∞ and ∞∑n=1bn∞∑n=1bn converges, the test also provides no information. For example, consider the two series ∞∑n=11√n∞∑n=11√n and ∞∑n=11n2∞∑n=11n2. These series are both p-series with p=12p=12 and p=2p=2, respectively. Since p=12>1p=12>1, the series ∞∑n=11√n∞∑n=11√n diverges. On the other hand, since p=2<1p=2<1, the series ∞∑n=11n2∞∑n=11n2 converges. However, suppose we attempted to apply the limit comparison test, using the convergent p−seriesp−series ∞∑n=11n3∞∑n=11n3 as our comparison series. First, we see that
Similarly, we see that
Therefore, if anbn→∞anbn→∞ when ∞∑n=1bn∞∑n=1bn converges, we do not gain any information on the convergence or divergence of ∞∑n=1an∞∑n=1an.
Example: Using the Limit Comparison Test
For each of the following series, use the limit comparison test to determine whether the series converges or diverges. If the test does not apply, say so.
- ∞∑n=11√n+1∞∑n=11√n+1
- ∞∑n=12n+13n∞∑n=12n+13n
- ∞∑n=1ln(n)n2∞∑n=1ln(n)n2
try it
Use the limit comparison test to determine whether the series ∞∑n=15n3n+2∞∑n=15n3n+2 converges or diverges.
Watch the following video to see the worked solution to the above Try It.
For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
You can view the transcript for this segmented clip “5.4.2” here (opens in new window).
Try It
Candela Citations
- 5.4.2. License: CC BY: Attribution
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction