Learning Outcomes
- Use the limit comparison test to determine convergence of a series
The comparison test works nicely if we can find a comparable series satisfying the hypothesis of the test. However, sometimes finding an appropriate series can be difficult. Consider the series
It is natural to compare this series with the convergent series
However, this series does not satisfy the hypothesis necessary to use the comparison test because
for all integers . Although we could look for a different series with which to compare , instead we show how we can use the limit comparison test to compare
Let us examine the idea behind the limit comparison test. Consider two series and . with positive terms and evaluate
If
then, for sufficiently large, . Therefore, either both series converge or both series diverge. For the series and , we see that
Since converges, we conclude that
converges.
The limit comparison test can be used in two other cases. Suppose
In this case, is a bounded sequence. As a result, there exists a constant such that . Therefore, if converges, then converges. On the other hand, suppose
In this case, is an unbounded sequence. Therefore, for every constant there exists an integer such that for all . Therefore, if diverges, then diverges as well.
Theorem: Limit Comparison Test
Let for all .
- If , then and both converge or both diverge.
- If and converges, then converges.
- If and diverges, then diverges.
Note that if and diverges, the limit comparison test gives no information. Similarly, if and converges, the test also provides no information. For example, consider the two series and . These series are both p-series with and , respectively. Since , the series diverges. On the other hand, since , the series converges. However, suppose we attempted to apply the limit comparison test, using the convergent as our comparison series. First, we see that
Similarly, we see that
Therefore, if when converges, we do not gain any information on the convergence or divergence of .
Example: Using the Limit Comparison Test
For each of the following series, use the limit comparison test to determine whether the series converges or diverges. If the test does not apply, say so.
try it
Use the limit comparison test to determine whether the series converges or diverges.
Watch the following video to see the worked solution to the above Try It.
For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
You can view the transcript for this segmented clip “5.4.2” here (opens in new window).
Try It
Candela Citations
- 5.4.2. License: CC BY: Attribution
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction