Problem Set: Partial Fractions

Express the rational function as a sum or difference of two simpler rational expressions.

1. 1(x3)(x2)

2. x2+1x(x+1)(x+2)

3. 1x3x

4. 3x+1x2

5. 3x2x2+1 (Hint: Use long division first.)

6. 2x4x22x

7. 1(x1)(x2+1)

8. 1x2(x1)

9. xx24

10. 1x(x1)(x2)(x3)

11. 1x41=1(x+1)(x1)(x2+1)

12. 3x2x31=3x2(x1)(x2+x+1)

13. 2x(x+2)2

14. 3x4+x3+20x2+3x+31(x+1)(x2+4)2

Use the method of partial fractions to evaluate each of the following integrals.

15. dx(x3)(x2)

16. 3xx2+2x8dx

17. dxx3x

18. xx24dx

19. dxx(x1)(x2)(x3)

20. 2x2+4x+22x2+2x+10dx

21. dxx25x+6

22. 2xx2+xdx

23. 2x2x6dx

24. dxx32x24x+8

25. dxx410x2+9

Evaluate the following integrals, which have irreducible quadratic factors.

26. 2(x4)(x2+2x+6)dx

27. x2x3x2+4x4dx

28. x3+6x2+3x+6x3+2x2dx

29. x(x1)(x2+2x+2)2dx

Use the method of partial fractions to evaluate the following integrals.

30. 3x+4(x2+4)(3x)dx

31. 2(x+2)2(2x)dx

32. 3x+4x32x4dx (Hint: Use the rational root theorem.)

Use substitution to convert the integrals to integrals of rational functions. Then use partial fractions to evaluate the integrals.

33. 10ex36e2xdx (Give the exact answer and the decimal equivalent. Round to five decimal places.)

34. exdxe2xexdx

35. sinxdx1cos2x

36. sinxcos2x+cosx6dx

37. 1x1+xdx

38. dt(ete-t)2

39. 1+ex1exdx

40. dx1+x+1

41. dxx+4x

42. cosxsinx(1sinx)dx

43. ex(e2x4)2dx

44. 211x24x2dx

45. 12+e-xdx

46. 11+exdx

Use the given substitution to convert the integral to an integral of a rational function, then evaluate.

47. 1t3tdtt=x3

48. 1x+3xdx;x=u6

49. Graph the curve y=x1+x over the interval [0,5]. Then, find the area of the region bounded by the curve, the x-axis, and the line x=4.


This figure is a graph of the function y = x/(1 + x). The graph is only in the first quadrant. It begins at the origin and increases into the first quadrant. The curve stops at x = 5.

50. Find the volume of the solid generated when the region bounded by y=1x(3x), y=0, x=1, and x=2 is revolved about the x-axis.

51. The velocity of a particle moving along a line is a function of time given by v(t)=88t2t2+1. Find the distance that the particle has traveled after t=5 sec.

Solve the initial-value problem for x as a function of t.

52. (t27t+12)dxdt=1,(t>4,x(5)=0)

53. (t+5)dxdt=x2+1,t>-5,x(1)=tan1

54. (2t32t2+t1)dxdt=3,x(2)=0

55. Find the x-coordinate of the centroid of the area bounded by y(x29)=1, y=0,x=4,and x=5. (Round the answer to two decimal places.)

56. Find the volume generated by revolving the area bounded by y=1x3+7x2+6xx=1,x=7,and y=0 about the y-axis.

57. Find the area bounded by y=x12x28x20, y=0,x=2,and x=4. (Round the answer to the nearest hundredth.)

58. Evaluate the integral dxx3+1.

For the following problems, use the substitutions tan(x2)=t, dx=21+t2dt, sinx=2t1+t2, and cosx=1t21+t2.

59. dx35sinx

60. Find the area under the curve y=11+sinx between x=0 and x=π. (Assume the dimensions are in inches.)

61. Given tan(x2)=t, derive the formulas dx=21+t2dt, sinx=2t1+t2, and cosx=1t21+t2.

62. Evaluate 3x8xdx.