Express the rational function as a sum or difference of two simpler rational expressions.
2. x2+1x(x+1)(x+2)
4. 3x+1x2
6. 2x4x2−2x
8. 1x2(x−1)
10. 1x(x−1)(x−2)(x−3)
12. 3x2x3−1=3x2(x−1)(x2+x+1)
14. 3x4+x3+20x2+3x+31(x+1)(x2+4)2
Use the method of partial fractions to evaluate each of the following integrals.
15. ∫dx(x−3)(x−2)
16. ∫3xx2+2x−8dx
18. ∫xx2−4dx
20. ∫2x2+4x+22x2+2x+10dx
22. ∫2−xx2+xdx
24. ∫dxx3−2x2−4x+8
25. ∫dxx4−10x2+9
Evaluate the following integrals, which have irreducible quadratic factors.
26. ∫2(x−4)(x2+2x+6)dx
28. ∫x3+6x2+3x+6x3+2x2dx
Use the method of partial fractions to evaluate the following integrals.
30. ∫3x+4(x2+4)(3−x)dx
32. ∫3x+4x3−2x−4dx (Hint: Use the rational root theorem.)
Use substitution to convert the integrals to integrals of rational functions. Then use partial fractions to evaluate the integrals.
34. ∫exdxe2x−exdx
36. ∫sinxcos2x+cosx−6dx
38. ∫dt(et−e-t)2
40. ∫dx1+√x+1
42. ∫cosxsinx(1−sinx)dx
44. 2∫11x2√4−x2dx
46. ∫11+exdx
Use the given substitution to convert the integral to an integral of a rational function, then evaluate.
48. ∫1√x+3√xdx;x=u6
49. Graph the curve y=x1+x over the interval [0,5]. Then, find the area of the region bounded by the curve, the x-axis, and the line x=4.
50. Find the volume of the solid generated when the region bounded by y=1√x(3−x), y=0, x=1, and x=2 is revolved about the x-axis.
Solve the initial-value problem for x as a function of t.
52. (t2−7t+12)dxdt=1,(t>4,x(5)=0)
54. (2t3−2t2+t−1)dxdt=3,x(2)=0
56. Find the volume generated by revolving the area bounded by y=1x3+7x2+6xx=1,x=7,and y=0 about the y-axis.
58. Evaluate the integral ∫dxx3+1.
For the following problems, use the substitutions tan(x2)=t, dx=21+t2dt, sinx=2t1+t2, and cosx=1−t21+t2.
60. Find the area under the curve y=11+sinx between x=0 and x=π. (Assume the dimensions are in inches.)
62. Evaluate ∫3√x−8xdx.
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction