For the following exercises (1-3), find the derivative dydx.dydx.
1. y=ln(2x)y=ln(2x)
2. y=ln(2x+1)y=ln(2x+1)
3. y=1lnxy=1lnx
For the following exercises (4-5), find the indefinite integral.
4. ∫dt3t∫dt3t
5. ∫dx1+x∫dx1+x
For the following exercises (6-15), find the derivative dy/dx.dy/dx. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)
6. [T] y=ln(x)xy=ln(x)x
7. [T] y=xln(x)y=xln(x)
8. [T] y=log10xy=log10x
9. [T] y=ln(sinx)y=ln(sinx)
10. [T] y=ln(lnx)y=ln(lnx)
11. [T] y=7ln(4x)y=7ln(4x)
12. [T] y=ln((4x)7)y=ln((4x)7)
13. [T] y=ln(tanx)y=ln(tanx)
14. [T] y=ln(tan(3x))y=ln(tan(3x))
15. [T] y=ln(cos2x)y=ln(cos2x)
For the following exercises (16-25), find the definite or indefinite integral.
16. ∫10dx3+x∫10dx3+x
17. ∫10dt3+2t∫10dt3+2t
18. ∫20xdxx2+1∫20xdxx2+1
19. ∫20x3dxx2+1∫20x3dxx2+1
20. ∫e2dxxlnx∫e2dxxlnx
21. ∫e2dx(xln(x))2∫e2dx(xln(x))2
22. ∫cosxdxsinx∫cosxdxsinx
23. ∫π/40tanxdx∫π/40tanxdx
24. ∫cot(3x)dx∫cot(3x)dx
25. ∫(lnx)2dxx∫(lnx)2dxx
For the following exercises (26-35), compute dy/dxdy/dx by differentiating lny.lny.
26. y=√x2+1y=√x2+1
27. y=√x2+1√x2−1y=√x2+1√x2−1
28. y=esinxy=esinx
29. y=x−1/xy=x−1/x
30. y=e(ex)y=e(ex)
31. y=xey=xe
32. y=x(ex)y=x(ex)
33. y=√x3√x6√xy=√x3√x6√x
34. y=x−1/lnxy=x−1/lnx
35. y=e−lnxy=e−lnx
For the following exercises (36-40), evaluate by any method.
36. ∫105dtt−∫10x5xdtt∫105dtt−∫10x5xdtt
37. ∫eπ1dxx+∫−1−2dxx∫eπ1dxx+∫−1−2dxx
38. ddx∫1xdttddx∫1xdtt
39. ddx∫x2xdttddx∫x2xdtt
40. ddxln(secx+tanx)ddxln(secx+tanx)
For the following exercises (41-, use the function lnx.lnx. If you are unable to find intersection points analytically, use a calculator.
41. Find the area of the region enclosed by x=1x=1 and y=5y=5 above y=lnx.y=lnx.
42. [T] Find the arc length of lnxlnx from x=1x=1 to x=2.x=2.
43. Find the area between lnxlnx and the xx-axis from x=1 to x=2.x=1 to x=2.
44. Find the volume of the shape created when rotating this curve from x=1 to x=2x=1 to x=2 around the xx-axis, as pictured here.
45. [T] Find the surface area of the shape created when rotating the curve in the previous exercise from x=1x=1 to x=2x=2 around the xx-axis.
If you are unable to find intersection points analytically in the following exercises (46-48), use a calculator.
46. Find the area of the hyperbolic quarter-circle enclosed by x=2 and y=2x=2 and y=2 above y=1x.y=1x.
47. [T] Find the arc length of y=1xy=1x from x=1 to x=4.x=1 to x=4.
48. Find the area under y=1xy=1x and above the xx-axis from x=1 to x=4.x=1 to x=4.
For the following exercises (49-53), verify the derivatives and antiderivatives.
49. ddxln(x+√x2+1)=1√1+x2ddxln(x+√x2+1)=1√1+x2
50. ddxln(x−ax+a)=2a(x2−a2)ddxln(x−ax+a)=2a(x2−a2)
51. ddxln(1+√1−x2x)=−1x√1−x2ddxln(1+√1−x2x)=−1x√1−x2
52. ddxln(x+√x2−a2)=1√x2−a2ddxln(x+√x2−a2)=1√x2−a2
53. ∫dxxln(x)ln(lnx)=ln(ln(lnx))+C∫dxxln(x)ln(lnx)=ln(ln(lnx))+C
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction