Problem Set: Integrals, Exponential Functions, and Logarithms

For the following exercises (1-3), find the derivative dydx.dydx.

1. y=ln(2x)y=ln(2x)

2. y=ln(2x+1)y=ln(2x+1)

3. y=1lnxy=1lnx

For the following exercises (4-5), find the indefinite integral.

4. dt3tdt3t

5. dx1+xdx1+x

For the following exercises (6-15), find the derivative dy/dx.dy/dx. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)

6. [T] y=ln(x)xy=ln(x)x

7. [T] y=xln(x)y=xln(x)

8. [T] y=log10xy=log10x

9. [T] y=ln(sinx)y=ln(sinx)

10. [T] y=ln(lnx)y=ln(lnx)

11. [T] y=7ln(4x)y=7ln(4x)

12. [T] y=ln((4x)7)y=ln((4x)7)

13. [T] y=ln(tanx)y=ln(tanx)

14. [T] y=ln(tan(3x))y=ln(tan(3x))

15. [T] y=ln(cos2x)y=ln(cos2x)

For the following exercises (16-25), find the definite or indefinite integral.

16. 10dx3+x10dx3+x

17. 10dt3+2t10dt3+2t

18. 20xdxx2+120xdxx2+1

19.  20x3dxx2+120x3dxx2+1

20. e2dxxlnxe2dxxlnx

21. e2dx(xln(x))2e2dx(xln(x))2

22. cosxdxsinxcosxdxsinx

23. π/40tanxdxπ/40tanxdx

24. cot(3x)dxcot(3x)dx

25. (lnx)2dxx(lnx)2dxx

For the following exercises (26-35), compute dy/dxdy/dx by differentiating lny.lny.

26. y=x2+1y=x2+1

27. y=x2+1x21y=x2+1x21

28. y=esinxy=esinx

29. y=x1/xy=x1/x

30. y=e(ex)y=e(ex)

31. y=xey=xe

32. y=x(ex)y=x(ex)

33. y=x3x6xy=x3x6x

34. y=x1/lnxy=x1/lnx

35. y=elnxy=elnx

For the following exercises (36-40), evaluate by any method.

36. 105dtt10x5xdtt105dtt10x5xdtt

37. eπ1dxx+12dxxeπ1dxx+12dxx

38. ddx1xdttddx1xdtt

39. ddxx2xdttddxx2xdtt

40. ddxln(secx+tanx)ddxln(secx+tanx)

For the following exercises (41-, use the function lnx.lnx. If you are unable to find intersection points analytically, use a calculator.

41. Find the area of the region enclosed by x=1x=1 and y=5y=5 above y=lnx.y=lnx.

42. [T] Find the arc length of lnxlnx from x=1x=1 to x=2.x=2.

43. Find the area between lnxlnx and the xx-axis from x=1 to x=2.x=1 to x=2.

44. Find the volume of the shape created when rotating this curve from x=1 to x=2x=1 to x=2 around the xx-axis, as pictured here.

This figure is a surface. It has been generated by revolving the curve ln x about the x-axis. The surface is inside of a cube showing it is 3-dimensinal.

45. [T] Find the surface area of the shape created when rotating the curve in the previous exercise from x=1x=1 to x=2x=2 around the xx-axis.

If you are unable to find intersection points analytically in the following exercises (46-48), use a calculator.

46. Find the area of the hyperbolic quarter-circle enclosed by x=2 and y=2x=2 and y=2 above y=1x.y=1x.

47. [T] Find the arc length of y=1xy=1x from x=1 to x=4.x=1 to x=4.

48. Find the area under y=1xy=1x and above the xx-axis from x=1 to x=4.x=1 to x=4.

For the following exercises (49-53), verify the derivatives and antiderivatives.

49. ddxln(x+x2+1)=11+x2ddxln(x+x2+1)=11+x2

50. ddxln(xax+a)=2a(x2a2)ddxln(xax+a)=2a(x2a2)

51. ddxln(1+1x2x)=1x1x2ddxln(1+1x2x)=1x1x2

52. ddxln(x+x2a2)=1x2a2ddxln(x+x2a2)=1x2a2

53. dxxln(x)ln(lnx)=ln(ln(lnx))+Cdxxln(x)ln(lnx)=ln(ln(lnx))+C