Learning Outcomes
- Apply factorial notation
- Simplify expressions using the Product Property of Exponents
- Calculate the limit of a function as π₯ increases or decreases without bound
- Recognize when to apply LβHΓ΄pitalβs rule
In the Alternating Series and Ratio and Root Tests sections, we will learn about the last few methods that can be used to determine whether an infinite series diverges or converges. Here we will review how to use factorial notation, use product rule for exponents, take limits at infinity, and apply LβHopitalβs Rule.
Apply Factorial Notation
Recall that factorial, written as , is the product of the positive integers from 1 to . For example,
An example of formula containing a factorial is . The sixth term of the sequence can be found by substituting 6 for .
The factorial of any whole number is We can therefore also think of as
A GENERAL NOTE: FACTORIAL
n factorial is a mathematical operation that can be defined using a recursive formula. The factorial of , denoted , is defined for a positive integer as:
The special case is defined as .
Try It
Try It
Expand .
Use the Product Rule for Exponents
A General Note: The Product Rule of Exponents
For any real number and natural numbers and , the product rule of exponents states that
Example: Using the Product Rule
Write each of the following products with a single base. Do not simplify further.
Try It
RECALL
For any real number and positive integers and , the power rule of exponents states that
For an expression like , you have a base of raised to the power of , which is then raised to another power of . Multiply the exponents and to find the new exponent for . This gives you or . Always remember: when an exponent is raised to another exponent, multiply the exponents to simplify the expression.
Try It
Simplify the expression .
Try It
Simplify the expression
Take Limits at Infinity
(see Module 5, Skills Review for Sequences.)
Infinite Limits at Infinity
(see Module 5, Skills Review for Sequences.)
Apply LβHΓ΄pitalβs Rule
(see Module 5, Skills Review for Sequences.)
Candela Citations
- Modification and Revision. Provided by: Lumen Learning. License: CC BY: Attribution
- College Algebra Corequisite. Provided by: Lumen Learning. Located at: https://courses.lumenlearning.com/waymakercollegealgebracorequisite/. License: CC BY: Attribution
- Precalculus. Provided by: Lumen Learning. Located at: https://courses.lumenlearning.com/precalculus/. License: CC BY: Attribution