Summary of the Divergence and Integral Tests

Essential Concepts

  • If limnan0, then the series n=1an diverges.
  • If limnan=0, the series n=1an may converge or diverge.
  • If n=1an is a series with positive terms an and f is a continuous, decreasing function such that f(n)=an for all positive integers n, then

    n=1anand1f(x)dx



    either both converge or both diverge. Furthermore, if n=1an converges, then the Nth partial sum approximation SN is accurate up to an error RN where N+1f(x)dx<RN<Nf(x)dx.

  • The p-series n=11np converges if p>1 and diverges if p1.

Key Equations

  • Divergence test

    If an0 as n,n=1an diverges.
  • p-series

    n=11np{ converges if p>1 diverges if p1
  • Remainder estimate from the integral test

    N+1f(x)dx<RN<Nf(x)dx

Glossary

divergence test
if limnan0, then the series n=1an diverges
integral test
for a series n=1an with positive terms an, if there exists a continuous, decreasing function f such that f(n)=an for all positive integers n, then

n=1an and 1f(x)dx
either both converge or both diverge
p-series
a series of the form n=11np
remainder estimate
for a series n=1an with positive terms an and a continuous, decreasing function f such that f(n)=an for all positive integers n, the remainder RN=n=1anNn=1an satisfies the following estimate:

N+1f(x)dx<RN<Nf(x)dx