Essential Concepts
- If limn→∞an≠0, then the series ∞∑n=1an diverges.
- If limn→∞an=0, the series ∞∑n=1an may converge or diverge.
- If ∞∑n=1an is a series with positive terms an and f is a continuous, decreasing function such that f(n)=an for all positive integers n, then
∞∑n=1anand∫∞1f(x)dx
either both converge or both diverge. Furthermore, if ∞∑n=1an converges, then the Nth partial sum approximation SN is accurate up to an error RN where ∫∞N+1f(x)dx<RN<∫∞Nf(x)dx. - The p-series ∞∑n=11np converges if p>1 and diverges if p≤1.
Key Equations
- Divergence test
If an↛0 as n→∞,∞∑n=1an diverges. - p-series
∞∑n=11np{ converges if p>1 diverges if p≤1 - Remainder estimate from the integral test
∫∞N+1f(x)dx<RN<∫∞Nf(x)dx
Glossary
- divergence test
- if limn→∞an≠0, then the series ∞∑n=1an diverges
- integral test
- for a series ∞∑n=1an with positive terms an, if there exists a continuous, decreasing function f such that f(n)=an for all positive integers n, then
∞∑n=1an and ∫∞1f(x)dxeither both converge or both diverge
- p-series
- a series of the form ∞∑n=11np
- remainder estimate
- for a series ∞∑n=1an with positive terms an and a continuous, decreasing function f such that f(n)=an for all positive integers n, the remainder RN=∞∑n=1an−N∑n=1an satisfies the following estimate:
∫∞N+1f(x)dx<RN<∫∞Nf(x)dx
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction