Essential Concepts
- For integrals involving [latex]\sqrt{{a}^{2}-{x}^{2}}[/latex], use the substitution [latex]x=a\sin\theta[/latex] and [latex]dx=a\cos\theta d\theta[/latex].
- For integrals involving [latex]\sqrt{{a}^{2}+{x}^{2}}[/latex], use the substitution [latex]x=a\tan\theta[/latex] and [latex]dx=a{\sec}^{2}\theta d\theta[/latex].
- For integrals involving [latex]\sqrt{{x}^{2}-{a}^{2}}[/latex], substitute [latex]x=a\sec\theta[/latex] and [latex]dx=a\sec\theta \tan\theta d\theta[/latex].
Glossary
- trigonometric substitution
- an integration technique that converts an algebraic integral containing expressions of the form [latex]\sqrt{{a}^{2}-{x}^{2}}[/latex], [latex]\sqrt{{a}^{2}+{x}^{2}}[/latex], or [latex]\sqrt{{x}^{2}-{a}^{2}}[/latex] into a trigonometric integral
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction