Essential Concepts
- For integrals involving √a2−x2√a2−x2, use the substitution x=asinθx=asinθ and dx=acosθdθdx=acosθdθ.
- For integrals involving √a2+x2√a2+x2, use the substitution x=atanθx=atanθ and dx=asec2θdθdx=asec2θdθ.
- For integrals involving √x2−a2√x2−a2, substitute x=asecθx=asecθ and dx=asecθtanθdθdx=asecθtanθdθ.
Glossary
- trigonometric substitution
- an integration technique that converts an algebraic integral containing expressions of the form √a2−x2√a2−x2, √a2+x2√a2+x2, or √x2−a2√x2−a2 into a trigonometric integral
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction