Fill in the blank to make a true statement.
1. [latex]{\sin}^{2}x+\_\_\_\_\_\_\_=1[/latex]
Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.
3. [latex]{\sin}^{2}x=\_\_\_\_\_\_\_[/latex]
Evaluate each of the following integrals by u-substitution.
5. [latex]\displaystyle\int {\sin}^{3}x\cos{x}dx[/latex]
7. [latex]\displaystyle\int {\tan}^{5}\left(2x\right){\sec}^{2}\left(2x\right)dx[/latex]
9. [latex]\displaystyle\int \tan\left(\frac{x}{2}\right){\sec}^{2}\left(\frac{x}{2}\right)dx[/latex]
Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)
11. [latex]\displaystyle\int {\sin}^{3}xdx[/latex]
13. [latex]\displaystyle\int \sin{x}\cos{x}dx[/latex]
15. [latex]\displaystyle\int {\sin}^{5}x{\cos}^{2}xdx[/latex]
17. [latex]\displaystyle\int \sqrt{\sin{x}}\cos{x}dx[/latex]
19. [latex]\displaystyle\int \sec{x}\tan{x}dx[/latex]
21. [latex]\displaystyle\int {\tan}^{2}x\sec{x}dx[/latex]
23. [latex]\displaystyle\int {\sec}^{4}xdx[/latex]
25. [latex]\displaystyle\int \csc{x}dx[/latex]
For the following exercises, find a general formula for the integrals.
27. [latex]\displaystyle\int {\sin}^{2}ax\cos{ax} dx[/latex]
Use the double-angle formulas to evaluate the following integrals.
29. [latex]{\displaystyle\int }_{0}^{\pi }{\sin}^{2}xdx[/latex]
31. [latex]\displaystyle\int {\cos}^{2}3xdx[/latex]
33. [latex]\displaystyle\int {\sin}^{2}xdx+\displaystyle\int {\cos}^{2}xdx[/latex]
For the following exercises, evaluate the definite integrals. Express answers in exact form whenever possible.
35. [latex]{\displaystyle\int }_{0}^{2\pi }\cos{x}\sin2xdx[/latex]
37. [latex]{\displaystyle\int }_{0}^{\pi }\cos\left(99x\right)\sin\left(101x\right)dx[/latex]
39. [latex]{\displaystyle\int }_{0}^{2\pi }\sin{x}\sin\left(2x\right)\sin\left(3x\right)dx[/latex]
41. [latex]{\displaystyle\int }_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{{\cos}^{3}x}{\sqrt{\sin{x}}}dx[/latex] (Round this answer to three decimal places.)
43. [latex]{\displaystyle\int }_{0}^{\frac{\pi}{2}}\sqrt{1-\cos\left(2x\right)}dx[/latex]
45. Find the area of the region bounded by the graphs of the equations [latex]y={\cos}^{2}x,y={\sin}^{2}x,x=-\frac{\pi }{4},\text{and }x=\frac{\pi }{4}[/latex].
47. Find the average value of the function [latex]f\left(x\right)={\sin}^{2}x{\cos}^{3}x[/latex] over the interval [latex]\left[\text{-}\pi ,\pi \right][/latex].
For the following exercises, solve the differential equations.
49. [latex]\frac{dy}{d\theta }={\sin}^{4}\left(\pi \theta \right)[/latex]
51. Find the length of the curve [latex]y=\text{ln}\left(\sin{x}\right),\frac{\pi }{3}\le x\le \frac{\pi }{2}[/latex].
For the following exercises, use this information: The inner product of two functions f and g over [latex]\left[a,b\right][/latex] is defined by [latex]f\left(x\right)\cdot g\left(x\right)=\langle f,g\rangle ={\displaystyle\int }_{a}^{b}f\cdot gdx[/latex]. Two distinct functions f and g are said to be orthogonal if [latex]\langle f,g\rangle =0[/latex].
53. Show that [latex]\left\{\sin\left(2x\right),\cos\left(3x\right)\right\}[/latex] are orthogonal over the interval [latex]\left[\text{-}\pi ,\pi \right][/latex].
55. Integrate [latex]{y}^{\prime }=\sqrt{\tan{x}}{\sec}^{4}x[/latex].
For each pair of integrals, determine which one is more difficult to evaluate. Explain your reasoning.
57. [latex]\displaystyle\int {\tan}^{350}x{\sec}^{2}xdx[/latex] or [latex]\displaystyle\int {\tan}^{350}x\sec{x}dx[/latex]
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction