Problem Set: Trigonometric Integrals

Fill in the blank to make a true statement.

1. sin2x+_______=1sin2x+_______=1

2. sec2x1=_______sec2x1=_______

Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.

3. sin2x=_______sin2x=_______

4. cos2x=_______cos2x=_______

Evaluate each of the following integrals by u-substitution.

5. sin3xcosxdxsin3xcosxdx

6. cosxsinxdxcosxsinxdx

7. tan5(2x)sec2(2x)dxtan5(2x)sec2(2x)dx

8. sin7(2x)cos(2x)dxsin7(2x)cos(2x)dx

9. tan(x2)sec2(x2)dxtan(x2)sec2(x2)dx

10. tan2xsec2xdxtan2xsec2xdx

Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)

11. sin3xdxsin3xdx

12. cos3xdxcos3xdx

13. sinxcosxdxsinxcosxdx

14. cos5xdxcos5xdx

15. sin5xcos2xdxsin5xcos2xdx

16. sin3xcos3xdxsin3xcos3xdx

17. sinxcosxdxsinxcosxdx

18. sinxcos3xdxsinxcos3xdx

19. secxtanxdxsecxtanxdx

20. tan(5x)dxtan(5x)dx

21. tan2xsecxdxtan2xsecxdx

22. tanxsec3xdxtanxsec3xdx

23. sec4xdxsec4xdx

24. cotxdxcotxdx

25. cscxdxcscxdx

26. tan3xsecxdxtan3xsecxdx

For the following exercises, find a general formula for the integrals.

27. sin2axcosaxdxsin2axcosaxdx

28. sinaxcosaxdxsinaxcosaxdx.

Use the double-angle formulas to evaluate the following integrals.

29. π0sin2xdxπ0sin2xdx

30. π0sin4xdxπ0sin4xdx

31. cos23xdxcos23xdx

32. sin2xcos2xdxsin2xcos2xdx

33. sin2xdx+cos2xdxsin2xdx+cos2xdx

34. sin2xcos2(2x)dxsin2xcos2(2x)dx

For the following exercises, evaluate the definite integrals. Express answers in exact form whenever possible.

35. 2π0cosxsin2xdx2π0cosxsin2xdx

36. π0sin3xsin5xdxπ0sin3xsin5xdx

37. π0cos(99x)sin(101x)dxπ0cos(99x)sin(101x)dx

38. π-πcos2(3x)dxπ-πcos2(3x)dx

39. 2π0sinxsin(2x)sin(3x)dx2π0sinxsin(2x)sin(3x)dx

40. 4π0cos(x2)sin(x2)dx4π0cos(x2)sin(x2)dx

41. π3π6cos3xsinxdxπ3π6cos3xsinxdx (Round this answer to three decimal places.)

42. π3-π3sec2x1dxπ3-π3sec2x1dx

43. π201cos(2x)dxπ201cos(2x)dx

44. Find the area of the region bounded by the graphs of the equations y=sinx,y=sin3x,x=0,and x=π2y=sinx,y=sin3x,x=0,and x=π2.

45. Find the area of the region bounded by the graphs of the equations y=cos2x,y=sin2x,x=π4,and x=π4y=cos2x,y=sin2x,x=π4,and x=π4.

46. A particle moves in a straight line with the velocity function v(t)=sin(ωt)cos2(ωt)v(t)=sin(ωt)cos2(ωt). Find its position function x=f(t)x=f(t) if f(0)=0f(0)=0.

47. Find the average value of the function f(x)=sin2xcos3xf(x)=sin2xcos3x over the interval [-π,π][-π,π].

For the following exercises, solve the differential equations.

48. dydx=sin2xdydx=sin2x. The curve passes through point (0,0)(0,0).

49. dydθ=sin4(πθ)dydθ=sin4(πθ)

50. Find the length of the curve y=ln(cscx),π4xπ2y=ln(cscx),π4xπ2.

51. Find the length of the curve y=ln(sinx),π3xπ2y=ln(sinx),π3xπ2.

52. Find the volume generated by revolving the curve y=cos(3x)y=cos(3x) about the x-axis, 0xπ360xπ36.

For the following exercises, use this information: The inner product of two functions f and g over [a,b][a,b] is defined by f(x)g(x)=f,g=bafgdxf(x)g(x)=f,g=bafgdx. Two distinct functions f and g are said to be orthogonal if f,g=0f,g=0.

53. Show that {sin(2x),cos(3x)}{sin(2x),cos(3x)} are orthogonal over the interval [-π,π][-π,π].

54. Evaluate π-πsin(mx)cos(nx)dxπ-πsin(mx)cos(nx)dx.

55. Integrate y=tanxsec4x.

For each pair of integrals, determine which one is more difficult to evaluate. Explain your reasoning.

56. sin456xcosxdx or sin2xcos2xdx

57. tan350xsec2xdx or tan350xsecxdx