Problem Set: Trigonometric Integrals

Fill in the blank to make a true statement.

1. sin2x+_______=1

2. sec2x1=_______

Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.

3. sin2x=_______

4. cos2x=_______

Evaluate each of the following integrals by u-substitution.

5. sin3xcosxdx

6. cosxsinxdx

7. tan5(2x)sec2(2x)dx

8. sin7(2x)cos(2x)dx

9. tan(x2)sec2(x2)dx

10. tan2xsec2xdx

Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)

11. sin3xdx

12. cos3xdx

13. sinxcosxdx

14. cos5xdx

15. sin5xcos2xdx

16. sin3xcos3xdx

17. sinxcosxdx

18. sinxcos3xdx

19. secxtanxdx

20. tan(5x)dx

21. tan2xsecxdx

22. tanxsec3xdx

23. sec4xdx

24. cotxdx

25. cscxdx

26. tan3xsecxdx

For the following exercises, find a general formula for the integrals.

27. sin2axcosaxdx

28. sinaxcosaxdx.

Use the double-angle formulas to evaluate the following integrals.

29. π0sin2xdx

30. π0sin4xdx

31. cos23xdx

32. sin2xcos2xdx

33. sin2xdx+cos2xdx

34. sin2xcos2(2x)dx

For the following exercises, evaluate the definite integrals. Express answers in exact form whenever possible.

35. 2π0cosxsin2xdx

36. π0sin3xsin5xdx

37. π0cos(99x)sin(101x)dx

38. π-πcos2(3x)dx

39. 2π0sinxsin(2x)sin(3x)dx

40. 4π0cos(x2)sin(x2)dx

41. π3π6cos3xsinxdx (Round this answer to three decimal places.)

42. π3-π3sec2x1dx

43. π201cos(2x)dx

44. Find the area of the region bounded by the graphs of the equations y=sinx,y=sin3x,x=0,and x=π2.

45. Find the area of the region bounded by the graphs of the equations y=cos2x,y=sin2x,x=π4,and x=π4.

46. A particle moves in a straight line with the velocity function v(t)=sin(ωt)cos2(ωt). Find its position function x=f(t) if f(0)=0.

47. Find the average value of the function f(x)=sin2xcos3x over the interval [-π,π].

For the following exercises, solve the differential equations.

48. dydx=sin2x. The curve passes through point (0,0).

49. dydθ=sin4(πθ)

50. Find the length of the curve y=ln(cscx),π4xπ2.

51. Find the length of the curve y=ln(sinx),π3xπ2.

52. Find the volume generated by revolving the curve y=cos(3x) about the x-axis, 0xπ36.

For the following exercises, use this information: The inner product of two functions f and g over [a,b] is defined by f(x)g(x)=f,g=bafgdx. Two distinct functions f and g are said to be orthogonal if f,g=0.

53. Show that {sin(2x),cos(3x)} are orthogonal over the interval [-π,π].

54. Evaluate π-πsin(mx)cos(nx)dx.

55. Integrate y=tanxsec4x.

For each pair of integrals, determine which one is more difficult to evaluate. Explain your reasoning.

56. sin456xcosxdx or sin2xcos2xdx

57. tan350xsec2xdx or tan350xsecxdx