Summary of the Dot Product

Essential Concepts

  • The dot product, or scalar product, of two vectors [latex]{\bf{u}}=\langle{u_1,u_2,u_3}\rangle[/latex] and [latex]{\bf{v}}=\langle{v_1,v_2,v_3}\rangle[/latex] is [latex]{\bf{u}}\cdot{\bf{v}}=u_{1}v_{1}+u_{2}v_{2}+u_{3}v_{3}[/latex].
  • The dot product satisfies the following properties:
    • [latex]{\bf{u}}\cdot{\bf{v}}={\bf{v}}\cdot{\bf{u}}[/latex]
    • [latex]{\bf{u}}\cdot\left({\bf{v}}+{\bf{w}}\right)={\bf{u}}\cdot{\bf{v}}+{\bf{u}}\cdot{\bf{w}}[/latex]
    • [latex]c({\bf{u}}\cdot{\bf{v}})=(c{\bf{u}})\cdot{\bf{v}}={\bf{u}}\cdot(c{\bf{v}})[/latex]
    • [latex]{\bf{v}}\cdot{\bf{v}}=\parallel{\bf{v}}\parallel^{2}[/latex]
  • The dot product of two vectors can be expressed, alternatively, as [latex]{\bf{u}}\cdot{\bf{v}}=\parallel{\bf{u}}\parallel\parallel{\bf{v}}\parallel\cos\theta[/latex]. This form of the dot product is useful for finding the measure of the angle formed by two vectors.
  • Vectors [latex]\bf{u}[/latex] and [latex]\bf{v}[/latex] are orthogonal if [latex]{\bf{u}}\cdot{\bf{v}}=0[/latex].
  • The angles formed by a nonzero vector and the coordinate axes are called the direction angles for the vector. The cosines of these angles are known as the direction cosines.
  • The vector projection of [latex]\bf{v}[/latex] onto [latex]\bf{u}[/latex] is the vector [latex]\text{proj}_{\bf{u}}{\bf{v}}=\frac{\bf{u}\cdot\bf{v}}{\parallel{\bf{u}}\parallel^{2}}{\bf{u}}[/latex]. The magnitude of this vector is known as the scalar projection of [latex]\bf{v}[/latex] onto [latex]\bf{u}[/latex], given by [latex]\text{comp}_{\bf{u}}{\bf{v}}=\frac{\bf{u}\cdot\bf{v}}{\parallel{\bf{u}}\parallel}[/latex].
  • Work is done when a force is applied to an object, causing displacement. When the force is represented by the vector [latex]\bf{F}[/latex] and the displacement is represented by the vector [latex]\bf{s}[/latex], then the work done [latex]W[/latex] is given by the formula [latex]W={\bf{F}}\cdot{\bf{s}}=\parallel{\bf{F}}\parallel\parallel{\bf{s}}\parallel\cos\theta[/latex].

Key Equations

  • Dot product of u and v
    [latex]{\bf{u}}\cdot{\bf{v}}=u_{1}v_{1}+u_{2}v_{2}+u_{3}v_{3}[/latex]
  • Cosine of the angle formed by u and v
    [latex]\cos\theta=\frac{{\bf{u}}\cdot{\bf{v}}}{\parallel{\bf{u}}\parallel\parallel{\bf{v}}\parallel}[/latex]
  • Vector projection of v onto u
    [latex]\text{proj}_{\bf{u}}{\bf{v}}=\frac{\bf{u}\cdot\bf{v}}{\parallel{\bf{u}}\parallel^{2}}{\bf{u}}[/latex]
  • Scalar projection of v onto u
    [latex]\text{comp}_{\bf{u}}{\bf{v}}=\frac{\bf{u}\cdot\bf{v}}{\parallel{\bf{u}}\parallel}[/latex]
  • Work done by a force F to move an object through displacement vector [latex]\overrightarrow{PQ}[/latex]
    [latex]W={\bf{F}}\cdot{\bf{s}}=\parallel{\bf{F}}\parallel\parallel{\bf{s}}\parallel\cos\theta[/latex]

Glossary

direction angles
the angles formed by a nonzero vector and the coordinate axes
direction cosines
the cosines of the angles formed by a nonzero vector and the coordinate axes
dot product or scalar product
[latex]{\bf{u}}\cdot{\bf{v}}=u_{1}v_{1}+u_{2}v_{2}+u_{3}v_{3}[/latex], where [latex]{\bf{u}}=\langle{u_1,u_2,u_3}\rangle[/latex] and[latex]{\bf{v}}=\langle{v_1,v_2,v_3}\rangle[/latex]
orthogonal vectors
vectors that form a right angle when placed in standard position
scalar projection
the magnitude of the vector projection of a vector
vector projection
the component of a vector that follows a given direction
work done by a force
work is generally thought of as the amount of energy it takes to move an object; if we represent an applied force by a vector [latex]\bf{F}[/latex] and the displacement of an object by a vector [latex]\bf{s}[/latex], then the work done by the force is the dot product of [latex]\bf{F}[/latex] and [latex]\bf{s}[/latex]