Essential Concepts
- To evaluate a triple integral in cylindrical coordinates, use the iterated integral
- To evaluate a triple integral in spherical coordinates, use the iterated integral
Key Equations
- Triple integral in cylindrical coordinates
∭Bg(x,y,z)dV=∭Bg(rcosθ,rsinθ,z)rdrdθdz=∭Bf(r,θ,z)rdrdθdz= - Triple integral in spherical coordinates
∭Bf(ρ,θ,φ)ρ2sinφdρdφdθ=∫φ=ψφ=γ∫θ=βθ=α∫ρ=bρ=aρ2sinφdρdφdθ
Glossary
- triple integral in cylindrical coordinates
- the limit of a triple Riemann sum, provided the following limit exists:liml,m,n→∞l∑i=1m∑j=1n∑k=1f(r∗i,j,k,θ∗i,j,k,z∗i,j,k)r∗i,j,kΔrΔθΔz
- triple integral in spherical coordinates
- the limit of a triple Riemann sum, provided the following limit exists: liml,m,n→∞l∑i=1m∑j=1n∑k=1f(ρ∗i,j,k,θ∗i,j,k,φ∗i,j,k)(ρ∗i,j,k)2sinφΔρΔθΔφ
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 3. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-3/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction