Section 1.8: Composition of Functions

Learning Outcomes

  • Combine functions using algebraic operations.
  • Create a new function by composition of functions.
  • Evaluate composite functions.
  • Find the domain of a composite function.
  • Decompose a composite function into its component functions.

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house will depend on the average daily temperature, and in turn, the average daily temperature depends on the particular day of the year. Notice how we have just defined two relationships: The cost depends on the temperature, and the temperature depends on the day.

Explanation of C(T(5)), which is the cost for the temperature and T(5) is the temperature on day 5.

Figure 1

Using descriptive variables, we can notate these two functions. The function C(T)C(T) gives the cost CC of heating a house for a given average daily temperature in TT degrees Celsius. The function T(d)T(d) gives the average daily temperature on day dd of the year. For any given day, Cost=C(T(d))Cost=C(T(d)) means that the cost depends on the temperature, which in turns depends on the day of the year. Thus, we can evaluate the cost function at the temperature T(d)T(d). For example, we could evaluate T(5)T(5) to determine the average daily temperature on the 5th day of the year. Then, we could evaluate the cost function at that temperature. We would write C(T(5))C(T(5)).

By combining these two relationships into one function, we have performed function composition, which is the focus of this section.

Combining Functions Using Algebraic Operations

Function composition is only one way to combine existing functions. Another way is to carry out the usual algebraic operations on functions, such as addition, subtraction, multiplication and division. We do this by performing the operations with the function outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual incomes over a period of years, with the result being their total household income. We want to do this for every year, adding only that year’s incomes and then collecting all the data in a new column. If w(y)w(y) is the wife’s income and h(y)h(y) is the husband’s income in year yy, and we want TT to represent the total income, then we can define a new function.

T(y)=h(y)+w(y)T(y)=h(y)+w(y)

If this holds true for every year, then we can focus on the relation between the functions without reference to a year and write

T=h+wT=h+w

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of functions that have the same kinds of inputs (not necessarily numbers) and also the same kinds of outputs (which do have to be numbers so that the usual operations of algebra can apply to them, and which also must have the same units or no units when we add and subtract). In this way, we can think of adding, subtracting, multiplying, and dividing functions.

For two functions f(x)f(x) and g(x)g(x) with real number outputs, we define new functions f+g,fg,fgf+g,fg,fg, and fgfg by the relations

(f+g)(x)=f(x)+g(x)(fg)(x)=f(x)g(x)(fg)(x)=f(x)g(x)(fg)(x)=f(x)g(x) (f+g)(x)=f(x)+g(x)(fg)(x)=f(x)g(x)(fg)(x)=f(x)g(x)(fg)(x)=f(x)g(x) 

Example 1: Performing Algebraic Operations on Functions

Find and simplify the functions (gf)(x)(gf)(x) and (gf)(x)(gf)(x), given f(x)=x1f(x)=x1 and g(x)=x21g(x)=x21. Are they the same function?

Try It

Find and simplify the functions (fg)(x)(fg)(x) and (fg)(x)(fg)(x).

f(x)=x1 and g(x)=x21f(x)=x1 and g(x)=x21

Are they the same function?

Create a Function by Composition of Functions

Performing algebraic operations on functions combines them into a new function, but we can also create functions by composing functions. When we wanted to compute a heating cost from a day of the year, we created a new function that takes a day as input and yields a cost as output. The process of combining functions so that the output of one function becomes the input of another is known as a composition of functions. The resulting function is known as a composite function. We represent this combination by the following notation:

(fg)(x)=f(g(x))(fg)(x)=f(g(x))

We read the left-hand side as "f"f composed with gg at x,"x," and the right-hand side as "f"f of gg of x."x." The two sides of the equation have the same mathematical meaning and are equal. The open circle symbol is called the composition operator. We use this operator mainly when we wish to emphasize the relationship between the functions themselves without referring to any particular input value. Composition is a binary operation that takes two functions and forms a new function, much as addition or multiplication takes two numbers and gives a new number. However, it is important not to confuse function composition with multiplication because, as we learned above, in most cases f(g(x))f(x)g(x)f(g(x))f(x)g(x).

It is also important to understand the order of operations in evaluating a composite function. We follow the usual convention with parentheses by starting with the innermost parentheses first, and then working to the outside. In the equation above, the function gg takes the input xx first and yields an output g(x)g(x). Then the function ff takes g(x)g(x) as an input and yields an output f(g(x))f(g(x)).

Explanation of the composite function. g(x), the output of g is the input of f. X is the input of g.

Figure 2

In general, fgfg and gfgf are different functions. In other words, in many cases f(g(x))g(f(x))f(g(x))g(f(x)) for all xx. We will also see that sometimes two functions can be composed only in one specific order.

For example, if f(x)=x2f(x)=x2 and g(x)=x+2g(x)=x+2, then

f(g(x))=f(x+2)=(x+2)2=x2+4x+4f(g(x))=f(x+2)=(x+2)2=x2+4x+4

but

g(f(x))=g(x2)=x2+2g(f(x))=g(x2)=x2+2

These expressions are not equal for all values of xx, so the two functions are not equal.

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the outside function. Less formally, the composition has to make sense in terms of inputs and outputs.

A General Note: Composition of Functions

When the output of one function is used as the input of another, we call the entire operation a composition of functions. For any input xx and functions ff and gg, this action defines a composite function, which we write as fgfg such that

(fg)(x)=f(g(x))(fg)(x)=f(g(x))

The domain of the composite function fgfg is all xx such that xx is in the domain of gg and g(x)g(x) is in the domain of ff.

It is important to realize that the product of functions fgfg is not the same as the function composition f(g(x))f(g(x)), because, in general, f(x)g(x)f(g(x))f(x)g(x)f(g(x)).

Example 2: Determining whether Composition of Functions is Commutative

Using the functions below, find f(g(x))f(g(x)) and g(f(x))g(f(x)). Determine whether the composition of the functions is commutative.

f(x)=2x+1f(x)=2x+1          g(x)=3xg(x)=3x

Example 3: Interpreting Composite Functions

The function c(s)c(s) gives the number of calories burned completing ss sit-ups, and s(t)s(t) gives the number of sit-ups a person can complete in tt minutes. Interpret c(s(3))c(s(3)).

Example 4: Investigating the Order of Function Composition

Suppose f(x)f(x) gives miles that can be driven in xx hours and g(y)g(y) gives the gallons of gas used in driving yy miles. Which of these expressions is meaningful: f(g(y))f(g(y)) or g(f(x))?g(f(x))?

Q & A

Are there any situations where f(g(y))f(g(y)) and g(f(x))g(f(x)) would both be meaningful or useful expressions?

Yes. For many pure mathematical functions, both compositions make sense, even though they usually produce different new functions. In real-world problems, functions whose inputs and outputs have the same units also may give compositions that are meaningful in either order.

Try It

The gravitational force on a planet a distance r from the sun is given by the function G(r)G(r). The acceleration of a planet subjected to any force FF is given by the function a(F)a(F). Form a meaningful composition of these two functions, and explain what it means.

Evaluating Composite Functions

Once we compose a new function from two existing functions, we need to be able to evaluate it for any input in its domain. We will do this with specific numerical inputs for functions expressed as tables, graphs, and formulas and with variables as inputs to functions expressed as formulas. In each case, we evaluate the inner function using the starting input and then use the inner function’s output as the input for the outer function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and output values from the table entries and always work from the inside to the outside. We evaluate the inside function first and then use the output of the inside function as the input to the outside function.

Example 5: Using a Table to Evaluate a Composite Function

Using the table below, evaluate f(g(3))f(g(3)) and g(f(3))g(f(3)).

xx f(x)f(x) g(x)g(x)
1 6 3
2 8 5
3 3 2
4 1 7

Try It

Using the table below, evaluate f(g(1))f(g(1)) and g(f(4))g(f(4)).

xx f(x)f(x) g(x)g(x)
1 6 3
2 8 5
3 3 2
4 1 7

Try it 4

Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure for evaluating composite functions is similar to the process we use for evaluating tables. We read the input and output values, but this time, from the x-x- and y-y- axes of the graphs.

How To: Given a composite function and graphs of its individual functions, evaluate it using the information provided by the graphs.

  1. Locate the given input to the inner function on the x-x- axis of its graph.
  2. Read off the output of the inner function from the y-y- axis of its graph.
  3. Locate the inner function output on the x-x- axis of the graph of the outer function.
  4. Read the output of the outer function from the y-y- axis of its graph. This is the output of the composite function.

Example 6: Using a Graph to Evaluate a Composite Function

Using the graphs in Figure 3, evaluate f(g(1))f(g(1)).

Explanation of the composite function.

Figure 3

Try It

Using Figure 6, evaluate g(f(2))g(f(2)).

Two graphs of a positive parabola (g(x)) and a negative parabola (f(x)). The following points are plotted: g(1)=3 and f(3)=6.

Figure 6

Try It

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either created or been given formulas, the rule of working from the inside out remains the same. The input value to the outer function will be the output of the inner function, which may be a numerical value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula that will calculate the result of a composition f(g(x))f(g(x)). To do this, we will extend our idea of function evaluation. Recall that, when we evaluate a function like f(t)=t2tf(t)=t2t, we substitute the value inside the parentheses into the formula wherever we see the input variable.

How To: Given a formula for a composite function, evaluate the function.

  1. Evaluate the inside function using the input value or variable provided.
  2. Use the resulting output as the input to the outside function.

Example 7: Evaluating a Composition of Functions Expressed as Formulas with a Numerical Input

Given f(t)=t2tf(t)=t2t and h(x)=3x+2h(x)=3x+2, evaluate f(h(1))f(h(1)).

Try It

Given f(t)=t2tf(t)=t2t and h(x)=3x+2h(x)=3x+2, evaluate

A) h(f(2))h(f(2))

B) h(f(2))h(f(2))

Try It

Finding the Domain of a Composite Function

As we discussed previously, the domain of a composite function such as fgfg is dependent on the domain of gg and the domain of ff. It is important to know when we can apply a composite function and when we cannot, that is, to know the domain of a function such as fgfg. Let us assume we know the domains of the functions ff and gg separately. If we write the composite function for an input xx as f(g(x))f(g(x)), we can see right away that xx must be a member of the domain of gg in order for the expression to be meaningful, because otherwise we cannot complete the inner function evaluation. However, we also see that g(x)g(x) must be a member of the domain of ff, otherwise the second function evaluation in f(g(x))f(g(x)) cannot be completed, and the expression is still undefined. Thus the domain of fgfg consists of only those inputs in the domain of gg that produce outputs from gg belonging to the domain of ff. Note that the domain of ff composed with gg is the set of all xx such that xx is in the domain of gg and g(x)g(x) is in the domain of ff.

A General Note: Domain of a Composite Function

The domain of a composite function f(g(x))f(g(x)) is the set of those inputs xx in the domain of gg for which g(x)g(x) is in the domain of ff.

How To: Given a function composition f(g(x))f(g(x)), determine its domain.

  1. Find the domain of gg.
  2. Find the domain of ff.
  3. Find those inputs, xx, in the domain of gg for which g(x)g(x) is in the domain of ff. That is, exclude those inputs, xx, from the domain of gg for which g(x)g(x) is not in the domain of ff. The resulting set is the domain of fgfg.

Example 8: Finding the Domain of a Composite Function

Find the domain of

(fg)(x) wheref(x)=5x1 and g(x)=43x2(fg)(x) wheref(x)=5x1 and g(x)=43x2

Example 9: Finding the Domain of a Composite Function Involving Radicals

Find the domain of

(fg)(x) wheref(x)=x+2 and g(x)=3x(fg)(x) wheref(x)=x+2 and g(x)=3x

 

Try It

Find the domain of

(fg)(x) wheref(x)=1x2 and g(x)=x+4(fg)(x) wheref(x)=1x2 and g(x)=x+4

Try It

Decomposing a Composite Function into its Component Functions

In some cases it is necessary to decompose a complicated function. In other words we can write it as a composition of two simpler functions. There are multiple ways to decompose a composite function, but often one is the most obvious.

Example 10: Decomposing a Function

Write f(x)=5x2f(x)=5x2 as the composition of two functions.

Try It

Write f(x)=434+x2f(x)=434+x2 as the composition of two functions.

Try It

Key Equation

Composite function (fg)(x)=f(g(x))(fg)(x)=f(g(x))

Key Concepts

  • We can perform algebraic operations on functions.
  • When functions are combined, the output of the first (inner) function becomes the input of the second (outer) function.
  • The function produced by combining two functions is a composite function.
  • The order of function composition must be considered when interpreting the meaning of composite functions.
  • A composite function can be evaluated by evaluating the inner function using the given input value and then evaluating the outer function taking as its input the output of the inner function.
  • A composite function can be evaluated from a table.
  • A composite function can be evaluated from a graph.
  • A composite function can be evaluated from a formula.
  • The domain of a composite function consists of those inputs in the domain of the inner function that correspond to outputs of the inner function that are in the domain of the outer function.
  • Just as functions can be combined to form a composite function, composite functions can be decomposed into simpler functions.
  • Functions can often be decomposed in more than one way.

Glossary

composite function
the new function formed by function composition, when the output of one function is used as the input of another

 

Section 1.8 Homework Exercises

1. How does one find the domain of the quotient of two functions, fg?fg?

2. What is the composition of two functions, fg?fg?

3. If the order is reversed when composing two functions, can the result ever be the same as the answer in the original order of the composition? If yes, give an example. If no, explain why not.

4. How do you find the domain for the composition of two functions, fg?fg?

5. Given f(x)=x2+2x f(x)=x2+2x  and g(x)=6x2g(x)=6x2, find f+g,fg,fg, f+g,fg,fg,  and  fg fg. Determine the domain for each function in interval notation.

6. Given f(x)=3x2+x f(x)=3x2+x  and  g(x)=5 g(x)=5, find f+g,fg,fgf+g,fg,fg, and  fg fg. Determine the domain for each function in interval notation.

7. Given f(x)=2x2+4x f(x)=2x2+4x  and  g(x)=12x g(x)=12x, find f+g,fg,fg, f+g,fg,fg,  and  fg fg. Determine the domain for each function in interval notation.

8. Given f(x)=1x4f(x)=1x4 and g(x)=16xg(x)=16x, find f+g,fg,fg, f+g,fg,fg,  and  fg fg. Determine the domain for each function in interval notation.

9. Given f(x)=3x2f(x)=3x2 and g(x)=x5g(x)=x5, find f+g,fg,fg, f+g,fg,fg,  and  fg fg. Determine the domain for each function in interval notation.

10. Given f(x)=xf(x)=x and g(x)=|x3|g(x)=|x3|, find gfgf. Determine the domain of the function in interval notation.

11. Given f(x)=2x2+1f(x)=2x2+1 and g(x)=3x5g(x)=3x5, find the following:

f(g(2))f(g(2))
f(g(x))f(g(x))
g(f(x))g(f(x))
(gg)(x)(gg)(x)
(ff)(2)(ff)(2)

For the following exercises, use each pair of functions to find f(g(x))f(g(x)) and g(f(x))g(f(x)). Simplify your answers.

12. f(x)=x2+1,g(x)=x+2f(x)=x2+1,g(x)=x+2

13. f(x)=x+2,g(x)=x2+3f(x)=x+2,g(x)=x2+3

14. f(x)=|x|,g(x)=5x+1f(x)=|x|,g(x)=5x+1

15. f(x)=3x,g(x)=x+1x3f(x)=3x,g(x)=x+1x3

16. f(x)=1x6,g(x)=7x+6f(x)=1x6,g(x)=7x+6

17. f(x)=1x4,g(x)=2x+4f(x)=1x4,g(x)=2x+4

For the following exercises, use each set of functions to find f(g(h(x)))f(g(h(x))). Simplify your answers.

18. f(x)=x4+6f(x)=x4+6, g(x)=x6g(x)=x6, and h(x)=xh(x)=x

19. f(x)=x2+1f(x)=x2+1, g(x)=1xg(x)=1x, and h(x)=x+3h(x)=x+3

20. Given f(x)=1xf(x)=1x and g(x)=x3g(x)=x3, find the following:

(fg)(x)(fg)(x)
the domain of (fg)(x)(fg)(x) in interval notation
(gf)(x)(gf)(x)
the domain of (gf)(x)(gf)(x)
(fg)x(fg)x

21. Given f(x)=24xf(x)=24x and g(x)=3xg(x)=3x, find the following:

a. (gf)(x)(gf)(x)

b. the domain of (gf)(x)(gf)(x) in interval notation

22. Given the functions f(x)=1xxandg(x)=11+x2f(x)=1xxandg(x)=11+x2, find the following:

a. (gf)(x)(gf)(x)

b. (gf)(2)(gf)(2)

23. Given functions p(x)=1xp(x)=1x and m(x)=x24m(x)=x24, state the domain of each of the following functions using interval notation:

p(x)m(x)p(m(x))m(p(x))p(x)m(x)p(m(x))m(p(x))

24. Given functions q(x)=1xq(x)=1x and h(x)=x29h(x)=x29, state the domain of each of the following functions using interval notation.

25. For f(x)=1xf(x)=1x and g(x)=x1g(x)=x1, write the domain of (fg)(x)(fg)(x) in interval notation.

For the following exercises, find functions f(x)f(x) and g(x)g(x) so the given function can be expressed as h(x)=f(g(x))h(x)=f(g(x)).

26. h(x)=(x+2)2h(x)=(x+2)2

27. h(x)=(x5)3h(x)=(x5)3

28. h(x)=3x5h(x)=3x5

29. h(x)=4(x+2)2h(x)=4(x+2)2

30. h(x)=4+3xh(x)=4+3x

31. h(x)=312x3h(x)=312x3

32. h(x)=1(3x24)3h(x)=1(3x24)3

33. h(x)=43x2x+5h(x)=43x2x+5

34. h(x)=(8+x38x3)4h(x)=(8+x38x3)4

35. h(x)=2x+6h(x)=2x+6

36. h(x)=(5x1)3h(x)=(5x1)3

37. h(x)=3x1h(x)=3x1

38. h(x)=|x2+7|h(x)=x2+7

39. h(x)=1(x2)3h(x)=1(x2)3

40. h(x)=(12x3)2h(x)=(12x3)2

41. h(x)=2x13x+4h(x)=2x13x+4

For the following exercises, use the graphs of ff and gg to evaluate the expressions.
Graph of a function.

Graph of a function.

42. f(g(3))f(g(3))

43. f(g(1))f(g(1))

44. g(f(1))g(f(1))

45. g(f(0))g(f(0))

46. f(f(5))f(f(5))

47. f(f(4))f(f(4))

48. g(g(2))g(g(2))

49. g(g(0))g(g(0))

For the following exercises, use graphs of f(x)f(x) g(x)g(x), and h(x)h(x), to evaluate the expressions.

Graph of a parabola.

Graph of a square root function.

50. g(f(1))g(f(1))

51. g(f(2))g(f(2))

52. f(g(4))f(g(4))

53. f(g(1))f(g(1))

54. f(h(2))f(h(2))

55. h(f(2))h(f(2))

56. f(g(h(4)))f(g(h(4)))

57. f(g(f(2)))f(g(f(2)))

For the following exercises, use the function values for f and gf and g to evaluate each expression.

xx f(x)f(x) g(x)g(x)
0 7 9
1 6 5
2 5 6
3 8 2
4 4 1
5 0 8
6 2 7
7 1 3
8 9 4
9 3 0

58. f(g(8))f(g(8))

59. f(g(5))f(g(5))

60. g(f(5))g(f(5))

61. g(f(3))g(f(3))

62. f(f(4))f(f(4))

63. f(f(1))f(f(1))

64. g(g(2))g(g(2))

65. g(g(6))g(g(6))

For the following exercises, use the function values for f and gf and g to evaluate the expressions.

xx f(x)f(x) g(x)g(x)
-3 11 -8
-2 9 -3
-1 7 0
0 5 1
1 3 0
2 1 -3
3 -1 -8

66. (fg)(1)(fg)(1)

67. (fg)(2)(fg)(2)

68. (gf)(2)(gf)(2)

69. (gf)(3)(gf)(3)

70. (gg)(1)(gg)(1)

71. (ff)(3)(ff)(3)

For the following exercises, use each pair of functions to find f(g(0))f(g(0)) and g(f(0))g(f(0)).

72. f(x)=4x+8,g(x)=7x2f(x)=4x+8,g(x)=7x2

73. f(x)=5x+7,g(x)=42x2f(x)=5x+7,g(x)=42x2

74. f(x)=x+4,g(x)=12x3f(x)=x+4,g(x)=12x3

75. f(x)=1x+2,g(x)=4x+3f(x)=1x+2,g(x)=4x+3

For the following exercises, use the functions f(x)=2x2+1f(x)=2x2+1 and g(x)=3x+5 to evaluate or find the composite function as indicated.

76. f(g(2))

77. f(g(x))

78. g(f(3))

79. (gg)(x)

For the following exercises, use f(x)=x3+1 and g(x)=3x1.

80. Find (fg)(x) and (gf)(x). Compare the two answers.

81. Find (fg)(2) and (gf)(2).

82. What is the domain of (gf)(x)?

83. What is the domain of (fg)(x)?

84. Let f(x)=1x.

a. Find (ff)(x).

b. Is (ff)(x) for any function f the same result as the answer to part (a) for any function? Explain.

For the following exercises, let F(x)=(x+1)5, f(x)=x5, and g(x)=x+1.

85. True or False: (gf)(x)=F(x).

86. True or False: (fg)(x)=F(x).

For the following exercises, find the composition when f(x)=x2+2 for all x0 and g(x)=x2.

87. (fg)(6);(gf)(6)

88. (gf)(a);(fg)(a)

89. (fg)(11);(gf)(11)

90. The function D(p) gives the number of items that will be demanded when the price is p. The production cost C(x) is the cost of producing x items. To determine the cost of production when the price is $6, you would do which of the following?

a. Evaluate D(C(6)).

b. Evaluate C(D(6)).

c. Solve D(C(x))=6.

d. Solve C(D(p))=6.

91. The function A(d) gives the pain level on a scale of 0 to 10 experienced by a patient with d milligrams of a pain-reducing drug in her system. The milligrams of the drug in the patient’s system after t minutes is modeled by m(t). Which of the following would you do in order to determine when the patient will be at a pain level of 4?

a. Evaluate A(m(4)).

b. Evaluate m(A(4)).

c. Solve A(m(t))=4.

d. Solve m(A(d))=4.

92. A store offers customers a 30% discount on the price x of selected items. Then, the store takes off an additional 15% at the cash register. Write a price function P(x) that computes the final price of the item in terms of the original price x. (Hint: Use function composition to find your answer.)

93. A rain drop hitting a lake makes a circular ripple. If the radius, in inches, grows as a function of time in minutes according to r(t)=25t+2, find the area of the ripple as a function of time. Find the area of the ripple at t=2.

94. A forest fire leaves behind an area of grass burned in an expanding circular pattern. If the radius of the circle of burning grass is increasing with time according to the formula r(t)=2t+1, express the area burned as a function of time, t (minutes).

95. Use the function you found in the previous exercise to find the total area burned after 5 minutes.

96. The radius r, in inches, of a spherical balloon is related to the volume, V, by r(V)=33V4π. Air is pumped into the balloon, so the volume after t seconds is given by V(t)=10+20t.

a. Find the composite function r(V(t)).

b. Find the exact time when the radius reaches 10 inches.

97. The number of bacteria in a refrigerated food product is given by N(T)=23T256T+1, [latex]3

a. Find the composite function N(T(t)).

b. Find the time (round to two decimal places) when the bacteria count reaches 6752.