Problem Set 71: Finding Limits: Properties of Limits

1. Give an example of a type of function ff whose limit, as xx approaches aa, is f(a)f(a).

2. When direct substitution is used to evaluate the limit of a rational function as xx approaches aa and the result is f(a)=00f(a)=00, does this mean that the limit of ff does not exist?

3. What does it mean to say the limit of f(x)f(x), as xx approaches cc, is undefined?

For the following exercises, evaluate the limits algebraically.

4. limx0(3)limx0(3)

5. limx2(5xx21)limx2(5xx21)

6. limx2(x25x+6x+2)limx2(x25x+6x+2)

7. limx3(x29x3)limx3(x29x3)

8. limx1(x22x3x+1)limx1(x22x3x+1)

9. limx32(6x217x+122x3)limx32(6x217x+122x3)

10. limx72(8x2+18x352x+7)limx72(8x2+18x352x+7)

11. limx3(x29x5x+6)limx3(x29x5x+6)

12. limx3(7x421x312x4+108x2)limx3(7x421x312x4+108x2)

13. limx3(x2+2x3x3)limx3(x2+2x3x3)

14. limh0((3+h)327h)limh0((3+h)327h)

15. limh0((2h)38h)limh0((2h)38h)

16. limh0((h+3)29h)limh0((h+3)29h)

17. limh0(5h5h)limh0(5h5h)

18. limx0(3x3x)limx0(3x3x)

19. limx9(x2813x)limx9(x2813x)

20. limx1(xx21x)limx1(xx21x)

21. limx0(x1+2x1)limx0(x1+2x1)

22. limx12(x2142x1)limx12(x2142x1)

23. limx4(x364x216)limx4(x364x216)

24. limx2(|x2|x2)limx2(|x2|x2)

25. limx2+(|x2|x2)limx2+(|x2|x2)

26. limx2(|x2|x2)limx2(|x2|x2)

27. limx4(|x4|4x)limx4(|x4|4x)

28. limx4+(|x4|4x)limx4+(|x4|4x)

29. limx4(|x4|4x)limx4(|x4|4x)

30. limx2(8+6xx2x2)limx2(8+6xx2x2)

For the following exercise, use the given information to evaluate the limits: limxcf(x)=3, limxcg(x)=5

31. limxc[2f(x)+g(x)]

32. limxc[3f(x)+g(x)]

33. limxcf(x)g(x)

For the following exercises, evaluate the following limits.

34. limx2cos(πx)

35. limx2sin(πx)

36. limx2sin(πx)

37. f(x)={2x2+2x+1,x0x3,x>0;limx0+f(x)

38. f(x)={2x2+2x+1,x0x3,x>0;limx0f(x)

39. f(x)={2x2+2x+1,x0x3,x>0;limx0f(x)

40. limx4x+53x4

41. limx3+x2x29

For the following exercises, find the average rate of change f(x+h)f(x)h.

42. f(x)=x+1

43. f(x)=2x21

44. f(x)=x2+3x+4

45. f(x)=x2+4x100

46. f(x)=3x2+1

47. f(x)=cos(x)

48. f(x)=2x34x

49. f(x)=1x

50. f(x)=1x2

51. f(x)=x

52. Find an equation that could be represented by Figure 2.

Graph of increasing function with a removable discontinuity at (2, 3).

Figure 2

53. Find an equation that could be represented by Figure 3.

Graph of increasing function with a removable discontinuity at (-3, -1).

Figure 4

For the following exercises, refer to Figure 4.

Graph of increasing function from zero to positive infinity.

Figure 5

54. What is the right-hand limit of the function as x approaches 0?

55. What is the left-hand limit of the function as x approaches 0?

56. The position function s(t)=16t2+144t gives the position of a projectile as a function of time. Find the average velocity (average rate of change) on the interval [1,2] .

57. The height of a projectile is given by s(t)=64t2+192t Find the average rate of change of the height from t=1 second to t=1.5 seconds.

58. The amount of money in an account after t years compounded continuously at 4.25% interest is given by the formula A=A0e0.0425t, where A0 is the initial amount invested. Find the average rate of change of the balance of the account from t=1 year to t=2 years if the initial amount invested is $1,000.00.