4.1 Section Exercises

4.1 Section Exercises

Verbal

1. Explain the difference between the coefficient of a power function and its degree.

2. If a polynomial function is in factored form, what would be a good first step in order to determine the degree of the function?

3. In general, explain the end behavior of a power function with odd degree if the leading coefficient is positive.

4. What is the relationship between the degree of a polynomial function and the maximum number of turning points in its graph?

5. What can we conclude if, in general, the graph of a polynomial function exhibits the following end behavior? As x, f(x)  x, f(x)  and as x, f(x).  x, f(x). 

Algebraic

For the following exercises, identify the function as a power function, a polynomial function, or neither.

6. f(x)=x5f(x)=x5

7. f(x)=(x2)3f(x)=(x2)3

8. f(x)=xx4f(x)=xx4

9. f(x)=x2x21f(x)=x2x21

10. f(x)=2x(x+2)(x1)2f(x)=2x(x+2)(x1)2

11. f(x)=3x+1f(x)=3x+1

For the following exercises, find the degree and leading coefficient for the given polynomial.

12. 3x43x4

13. 72x272x2

14. 2x23x5+x62x23x5+x6

15. x(4x2)(2x+1)x(4x2)(2x+1)

16. x2(2x3)2x2(2x3)2

For the following exercises, determine the end behavior of the functions.

17. f(x)=x4f(x)=x4

18. f(x)=x3f(x)=x3

19. f(x)=x4f(x)=x4

20. f(x)=x9f(x)=x9

21. f(x)=2x43x2+x1f(x)=2x43x2+x1

22. f(x)=3x2+x2f(x)=3x2+x2

23. f(x)=x2(2x3x+1)f(x)=x2(2x3x+1)

24. f(x)=(2x)7f(x)=(2x)7

For the following exercises, find the intercepts of the functions.

25. f(t)=2(t1)(t+2)(t3)f(t)=2(t1)(t+2)(t3)

26. g(n)=2(3n1)(2n+1)g(n)=2(3n1)(2n+1)

27. f(x)=x416f(x)=x416

28. f(x)=x3+27f(x)=x3+27

29. f(x)=x(x22x8)f(x)=x(x22x8)

30. f(x)=(x+3)(4x21)f(x)=(x+3)(4x21)

Graphical

For the following exercises, determine the least possible degree of the polynomial function shown.

31. Graph of an odd-degree polynomial.

32. Graph of an even-degree polynomial.
33. Graph of an odd-degree polynomial.

34. Graph of an odd-degree polynomial.
35. Graph of an odd-degree polynomial.

36. Graph of an even-degree polynomial.
37. Graph of an odd-degree polynomial.

38. Graph of an even-degree polynomial.

For the following exercises, determine whether the graph of the function provided is a graph of a polynomial function. If so, determine the number of turning points and the least possible degree for the function.

39. Graph of an odd-degree polynomial.

40. Graph of an equation.
41. Graph of an even-degree polynomial.

42. Graph of an odd-degree polynomial.
43. Graph of an odd-degree polynomial.

44. Graph of an equation.

45. Graph of an odd-degree polynomial.

Numeric

For the following exercises, make a table to confirm the end behavior of the function.

46. f(x)=x3f(x)=x3

47. f(x)=x45x2f(x)=x45x2

as x,  f(x), as x, f(x)as x,  f(x), as x, f(x)

48. f(x)=x2(1x)2f(x)=x2(1x)2

49. f(x)=(x1)(x2)(3x)f(x)=(x1)(x2)(3x)

50. f(x)=x510x4f(x)=x510x4

Technology

For the following exercises, graph the polynomial functions using a calculator. Based on the graph, determine the intercepts and the end behavior.

51. f(x)=x3(x2)f(x)=x3(x2)

52. f(x)=x(x3)(x+3)f(x)=x(x3)(x+3)

53. f(x)=x(142x)(102x)f(x)=x(142x)(102x)

54. f(x)=x(142x)(102x)2f(x)=x(142x)(102x)2

55. f(x)=x316xf(x)=x316x

56. f(x)=x327f(x)=x327

57. f(x)=x481f(x)=x481

58. f(x)=x3+x2+2xf(x)=x3+x2+2x

59. f(x)=x32x215xf(x)=x32x215x

60. f(x)=x30.01xf(x)=x30.01x

Extensions

For the following exercises, use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or –1. There may be more than one correct answer.

61. The y yintercept is (0,4).  (0,4). The x xintercepts are (2,0), (2,0).  (2,0), (2,0). Degree is 2.

End behavior: as x,  f(x), as x, f(x). as x,  f(x), as x, f(x).

62. The y yintercept is (0,9).  (0,9). The x- x-intercepts are (3,0), (3,0).  (3,0), (3,0). Degree is 2.

End behavior: as x,  f(x), as x, f(x). as x,  f(x), as x, f(x).

63. The y yintercept is (0,0).  (0,0). The x xintercepts are (0,0), (2,0).  (0,0), (2,0). Degree is 3.

End behavior: as x,  f(x), as x, f(x). as x,  f(x), as x, f(x).

64. The y yintercept is (0,1).  (0,1). The x xintercept is (1,0).  (1,0). Degree is 3.

End behavior: as x,  f(x), as x, f(x). as x,  f(x), as x, f(x).

65. The y yintercept is (0,1).  (0,1). There is no x xintercept. Degree is 4.

End behavior: as x,  f(x), as x, f(x). as x,  f(x), as x, f(x).

Real-World Applications

For the following exercises, use the written statements to construct a polynomial function that represents the required information.

66. An oil slick is expanding as a circle. The radius of the circle is increasing at the rate of 20 meters per day. Express the area of the circle as a function of d,  d, the number of days elapsed.

67. A cube has an edge of 3 feet. The edge is increasing at the rate of 2 feet per minute. Express the volume of the cube as a function of m,  m, the number of minutes elapsed.

68. A rectangle has a length of 10 inches and a width of 6 inches. If the length is increased by x  x inches and the width increased by twice that amount, express the area of the rectangle as a function of x. x.

69. An open box is to be constructed by cutting out square corners of  x xinch sides from a piece of cardboard 8 inches by 8 inches and then folding up the sides. Express the volume of the box as a function of x. x.

70. A rectangle is twice as long as it is wide. Squares of side 2 feet are cut out from each corner. Then the sides are folded up to make an open box. Express the volume of the box as a function of the width (xx).