What you’ll learn to do: explain the process of memory
Our memory has three basic functions: encoding, storing, and retrieving information. Encoding is the act of getting information into our memory system through automatic or effortful processing. Storage is retention of the information, and retrieval is the act of getting information out of storage and into conscious awareness through recall, recognition, and relearning. There are various models that aim to explain how we utilize our memory. In this section, you’ll learn about some of these models as well as the importance of recall, recognition, and relearning.
Link to Learning
To get a good overview of all of these concepts and to pique your interest, you may choose to begin this module by watching John Gabrieli’s lecture on memory. Listen for some key vocabulary terms you’ll learn about soon, particularly:
- the three-stage model of memory
- short-term memory
- serial position effect
- primacy
- recency
- Ebbinghaus forgetting curve
- proactive interference
- retroactive interference
- flashbulb memories
- false memories
Learning Objectives
- Explain the three types of encoding
- Describe the three stages of memory storage
Memory is an information processing system; therefore, we often compare it to a computer. Memory is the set of processes used to encode, store, and retrieve information over different periods of time.
Encoding
What are the most effective ways to ensure that important memories are well encoded? Even a simple sentence is easier to recall when it is meaningful (Anderson, 1984). Read the following sentences (Bransford & McCarrell, 1974), then look away and count backwards from 30 by threes to zero, and then try to write down the sentences (no peeking back at this page!).
- The notes were sour because the seams split.
- The voyage wasn’t delayed because the bottle shattered.
- The haystack was important because the cloth ripped.
How well did you do? By themselves, the statements that you wrote down were most likely confusing and difficult for you to recall. Now, try writing them again, using the following prompts: bagpipe, ship christening (shattering a bottle over the bow of the ship is a symbol of good luck), and parachutist. Next count backwards from 40 by fours, then check yourself to see how well you recalled the sentences this time. You can see that the sentences are now much more memorable because each of the sentences was placed in context. Material is far better encoded when you make it meaningful.
Try It
There are three types of encoding. The encoding of words and their meaning is known as semantic encoding. It was first demonstrated by William Bousfield (1935) in an experiment in which he asked people to memorize words. The 60 words were actually divided into 4 categories of meaning, although the participants did not know this because the words were randomly presented. When they were asked to remember the words, they tended to recall them in categories, showing that they paid attention to the meanings of the words as they learned them.
Visual encoding is the encoding of images, and acoustic encoding is the encoding of sounds, words in particular. To see how visual encoding works, read over this list of words: car, level, dog, truth, book, value. If you were asked later to recall the words from this list, which ones do you think you’d most likely remember? You would probably have an easier time recalling the words car, dog, and book, and a more difficult time recalling the words level, truth, and value. Why is this? Because you can recall images (mental pictures) more easily than words alone. When you read the words car, dog, and book you created images of these things in your mind. These are concrete, high-imagery words. On the other hand, abstract words like level, truth, and value are low-imagery words. High-imagery words are encoded both visually and semantically (Paivio, 1986), thus building a stronger memory.
Now let’s turn our attention to acoustic encoding. You are driving in your car and a song comes on the radio that you haven’t heard in at least 10 years, but you sing along, recalling every word. In the United States, children often learn the alphabet through song, and they learn the number of days in each month through rhyme: “Thirty days hath September, / April, June, and November; / All the rest have thirty-one, / Save February, with twenty-eight days clear, / And twenty-nine each leap year.” These lessons are easy to remember because of acoustic encoding. We encode the sounds the words make. This is one of the reasons why much of what we teach young children is done through song, rhyme, and rhythm.
Which of the three types of encoding do you think would give you the best memory of verbal information? Some years ago, psychologists Fergus Craik and Endel Tulving (1975) conducted a series of experiments to find out. Participants were given words along with questions about them. The questions required the participants to process the words at one of the three levels. The visual processing questions included such things as asking the participants about the font of the letters. The acoustic processing questions asked the participants about the sound or rhyming of the words, and the semantic processing questions asked the participants about the meaning of the words. After participants were presented with the words and questions, they were given an unexpected recall or recognition task.
Words that had been encoded semantically were better remembered than those encoded visually or acoustically. Semantic encoding involves a deeper level of processing than the shallower visual or acoustic encoding. Craik and Tulving concluded that we process verbal information best through semantic encoding, especially if we apply what is called the self-reference effect. The self-reference effect is the tendency for an individual to have better memory for information that relates to oneself in comparison to material that has less personal relevance (Rogers, Kuiper & Kirker, 1977). Could semantic encoding be beneficial to you as you attempt to memorize the concepts in this module?
Recoding
The process of encoding is selective, and in complex situations, relatively few of many possible details are noticed and encoded. The process of encoding always involves recoding—that is, taking the information from the form it is delivered to us and then converting it in a way that we can make sense of it. For example, you might try to remember the colors of a rainbow by using the acronym ROY G BIV (red, orange, yellow, green, blue, indigo, violet). The process of recoding the colors into a name can help us to remember. However, recoding can also introduce errors—when we accidentally add information during encoding, then remember that new material as if it had been part of the actual experience (as discussed below).
Psychologists have studied many recoding strategies that can be used during study to improve retention. First, research advises that, as we study, we should think of the meaning of the events (Craik & Lockhart, 1972), and we should try to relate new events to information we already know. This helps us form associations that we can use to retrieve information later. Second, imagining events also makes them more memorable; creating vivid images out of information (even verbal information) can greatly improve later recall (Bower & Reitman, 1972). Creating imagery is part of the technique Simon Reinhard uses to remember huge numbers of digits, but we can all use images to encode information more effectively. The basic concept behind good encoding strategies is to form distinctive memories (ones that stand out), and to form links or associations among memories to help later retrieval (Hunt & McDaniel, 1993). Using study strategies such as the ones described here is challenging, but the effort is well worth the benefits of enhanced learning and retention.
We emphasized earlier that encoding is selective: people cannot encode all information they are exposed to. However, recoding can add information that was not even seen or heard during the initial encoding phase. Several of the recoding processes, like forming associations between memories, can happen without our awareness. This is one reason people can sometimes remember events that did not actually happen—because during the process of recoding, details got added. One common way of inducing false memories in the laboratory employs a word-list technique (Deese, 1959; Roediger & McDermott, 1995). Participants hear lists of 15 words, like door, glass, pane, shade, ledge, sill, house, open, curtain, frame, view, breeze, sash, screen, and shutter. Later, participants are given a test in which they are shown a list of words and asked to pick out the ones they’d heard earlier. This second list contains some words from the first list (e.g., door, pane, frame) and some words not from the list (e.g., arm, phone, bottle). In this example, one of the words on the test is window, which—importantly—does not appear in the first list, but which is related to other words in that list. When subjects were tested, they were reasonably accurate with the studied words (door, etc.), recognizing them 72% of the time. However, when window was on the test, they falsely recognized it as having been on the list 84% of the time (Stadler, Roediger, & McDermott, 1999). The same thing happened with many other lists the authors used. This phenomenon is referred to as the DRM (for Deese-Roediger-McDermott) effect. One explanation for such results is that, while students listened to items in the list, the words triggered the students to think about window, even though window was never presented. In this way, people seem to encode events that are not actually part of their experience.
Because humans are creative, we are always going beyond the information we are given: we automatically make associations and infer from them what is happening. But, as with the word association mix-up above, sometimes we make false memories from our inferences—remembering the inferences themselves as if they were actual experiences. To illustrate this, Brewer (1977) gave people sentences to remember that were designed to elicit pragmatic inferences. Inferences, in general, refer to instances when something is not explicitly stated, but we are still able to guess the undisclosed intention. For example, if your friend told you that she didn’t want to go out to eat, you may infer that she doesn’t have the money to go out, or that she’s too tired. With pragmatic inferences, there is usually one particular inference you’re likely to make. Consider the statement Brewer (1977) gave her participants: “The karate champion hit the cinder block.” After hearing or seeing this sentence, participants who were given a memory test tended to remember the statement as having been, “The karate champion broke the cinder block.” This remembered statement is not necessarily a logical inference (i.e., it is perfectly reasonable that a karate champion could hit a cinder block without breaking it). Nevertheless, the pragmatic conclusion from hearing such a sentence is that the block was likely broken. The participants remembered this inference they made while hearing the sentence in place of the actual words that were in the sentence (see also McDermott & Chan, 2006).
Encoding—the initial registration of information—is essential in the learning and memory process. Unless an event is encoded in some fashion, it will not be successfully remembered later. However, just because an event is encoded (even if it is encoded well), there’s no guarantee that it will be remembered later.
Try It