How can you measure the distance of an object that is too far away to measure? Now what if you don’t know the size of the object or the size or distance of any other objects like it? That would be very difficult, but that is the problem facing astronomers when they try to measure the distances to stars.
Parallax
Distances to stars that are relatively close to us can be measured using parallax. Parallax is an apparent shift in position that takes place when the position of the observer changes. To see an example of parallax, try holding your finger about 1 foot (30 cm) in front of your eyes. Now, while focusing on your finger, close one eye and then the other. Alternate back and forth between eyes, and pay attention to how your finger appears to move. The shift in position of your finger is an example of parallax. Now try moving your finger closer to your eyes, and repeat the experiment. Do you notice any difference? The closer your finger is to your eyes, the greater the position changes because of parallax.Astronomers use this same principle to measure the distance to stars. Instead of a finger, they focus on a star, and instead of switching back and forth between eyes, they switch between the biggest possible differences in observing position. To do this, an astronomer first looks at the star from one position and notes where the star is relative to more distant stars. Now where will the astronomer go to make an observation the greatest possible distance from the first observation? In six months, after Earth moves from one side of its orbit around the Sun to the other side, the astronomer looks at the star again. This time parallax causes the star to appear in a different position relative to more distant stars. From the size of this shift, astronomers can calculate the distance to the star. Check out this great parallax exercise. Even with the most precise instruments available, parallax is too small to measure the distance to stars that are more than a few hundred light years away. For these more distant stars, astronomers must use more indirect methods of determining distance. Most of these methods involve determining how bright the star they are looking at really is. For example, if the star has properties similar to the Sun, then it should be about as bright as the Sun. The astronomer compares the observed brightness to the expected brightness.
Candela Citations
CC licensed content, Shared previously
- Dynamic Earth: Introduction to Physical Geography. Authored by: R. Adam Dastrup. Located at: http://www.opengeography.org/physical-geography.html. Project: Open Geography Education. License: CC BY-SA: Attribution-ShareAlike
Public domain content
- Stellar Parallax. Authored by: Booyabazooka. Located at: https://commons.wikimedia.org/wiki/File:Stellarparallax2.svg. License: Public Domain: No Known Copyright