Learning Objectives
In this section students will:
- Simplify rational expressions.
- Multiply rational expressions.
- Divide rational expressions.
- Add and subtract rational expressions.
- Simplify complex rational expressions.
A pastry shop has fixed costs of$280$280per week and variable costs of$9$9per box of pastries. The shop’s costs per week in terms ofx,x,the number of boxes made, is280+9x.280+9x.We can divide the costs per week by the number of boxes made to determine the cost per box of pastries.
Notice that the result is a polynomial expression divided by a second polynomial expression. In this section, we will explore quotients of polynomial expressions.
Simplifying Rational Expressions
The quotient of two polynomial expressions is called a rational expression. We can apply the properties of fractions to rational expressions, such as simplifying the expressions by canceling common factors from the numerator and the denominator. To do this, we first need to factor both the numerator and denominator. Let’s start with the rational expression shown.
We can factor the numerator and denominator to rewrite the expression.
Then we can simplify that expression by canceling the common factor(x+4).(x+4).
How To
Given a rational expression, simplify it.
- Factor the numerator and denominator.
- Cancel any common factors.
Simplifying Rational Expressions
Simplifyx2−9x2+4x+3.x2−9x2+4x+3.
Analysis
We can cancel the common factor because any expression divided by itself is equal to 1.
Can thex2x2term be cancelled in (Figure)?
No. A factor is an expression that is multiplied by another expression. Thex2x2term is not a factor of the numerator or the denominator.
Try It
Simplifyx−6x2−36.x−6x2−36.
Multiplying Rational Expressions
Multiplication of rational expressions works the same way as multiplication of any other fractions. We multiply the numerators to find the numerator of the product, and then multiply the denominators to find the denominator of the product. Before multiplying, it is helpful to factor the numerators and denominators just as we did when simplifying rational expressions. We are often able to simplify the product of rational expressions.
How To
Given two rational expressions, multiply them.
- Factor the numerator and denominator.
- Multiply the numerators.
- Multiply the denominators.
- Simplify.
Multiplying Rational Expressions
Multiply the rational expressions and show the product in simplest form:
Try It
Multiply the rational expressions and show the product in simplest form:
Dividing Rational Expressions
Division of rational expressions works the same way as division of other fractions. To divide a rational expression by another rational expression, multiply the first expression by the reciprocal of the second. Using this approach, we would rewrite1x÷x231x÷x23as the product1x⋅3x2.1x⋅3x2.Once the division expression has been rewritten as a multiplication expression, we can multiply as we did before.
How To
Given two rational expressions, divide them.
- Rewrite as the first rational expression multiplied by the reciprocal of the second.
- Factor the numerators and denominators.
- Multiply the numerators.
- Multiply the denominators.
- Simplify.
Dividing Rational Expressions
Divide the rational expressions and express the quotient in simplest form:
Try It
Divide the rational expressions and express the quotient in simplest form:
Adding and Subtracting Rational Expressions
Adding and subtracting rational expressions works just like adding and subtracting numerical fractions. To add fractions, we need to find a common denominator. Let’s look at an example of fraction addition.
We have to rewrite the fractions so they share a common denominator before we are able to add. We must do the same thing when adding or subtracting rational expressions.
The easiest common denominator to use will be the least common denominator, or LCD. The LCD is the smallest multiple that the denominators have in common. To find the LCD of two rational expressions, we factor the expressions and multiply all of the distinct factors. For instance, if the factored denominators were(x+3)(x+4)(x+3)(x+4)and(x+4)(x+5),(x+4)(x+5),then the LCD would be(x+3)(x+4)(x+5).(x+3)(x+4)(x+5).
Once we find the LCD, we need to multiply each expression by the form of 1 that will change the denominator to the LCD. We would need to multiply the expression with a denominator of(x+3)(x+4)(x+3)(x+4)byx+5x+5x+5x+5and the expression with a denominator of(x+4)(x+5)(x+4)(x+5)byx+3x+3.x+3x+3.
How To
Given two rational expressions, add or subtract them.
- Factor the numerator and denominator.
- Find the LCD of the expressions.
- Multiply the expressions by a form of 1 that changes the denominators to the LCD.
- Add or subtract the numerators.
- Simplify.
Adding Rational Expressions
Add the rational expressions:
Analysis
Multiplying byyyyyorxxxxdoes not change the value of the original expression because any number divided by itself is 1, and multiplying an expression by 1 gives the original expression.
Subtracting Rational Expressions
Subtract the rational expressions:
Do we have to use the LCD to add or subtract rational expressions?
No. Any common denominator will work, but it is easiest to use the LCD.
Try It
Subtract the rational expressions:3x+5−1x−3.3x+5−1x−3.
Simplifying Complex Rational Expressions
A complex rational expression is a rational expression that contains additional rational expressions in the numerator, the denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator as single rational expressions and dividing. The complex rational expressiona1b+ca1b+ccan be simplified by rewriting the numerator as the fractiona1a1and combining the expressions in the denominator as1+bcb.1+bcb.We can then rewrite the expression as a multiplication problem using the reciprocal of the denominator. We geta1⋅b1+bc,a1⋅b1+bc,which is equal toab1+bc.ab1+bc.
How To
Given a complex rational expression, simplify it.
- Combine the expressions in the numerator into a single rational expression by adding or subtracting.
- Combine the expressions in the denominator into a single rational expression by adding or subtracting.
- Rewrite as the numerator divided by the denominator.
- Rewrite as multiplication.
- Multiply.
- Simplify.
Simplifying Complex Rational Expressions
Simplify:y+1xxyy+1xxy.
Try It
Simplify:xy−yxyxy−yxy
Can a complex rational expression always be simplified?
Yes. We can always rewrite a complex rational expression as a simplified rational expression.
Access these online resources for additional instruction and practice with rational expressions.
Key Concepts
- Rational expressions can be simplified by cancelling common factors in the numerator and denominator. See (Figure).
- We can multiply rational expressions by multiplying the numerators and multiplying the denominators. See (Figure).
- To divide rational expressions, multiply by the reciprocal of the second expression. See (Figure).
- Adding or subtracting rational expressions requires finding a common denominator. See (Figure) and (Figure).
- Complex rational expressions have fractions in the numerator or the denominator. These expressions can be simplified. See (Figure).
Section Exercises
Verbal
How can you use factoring to simplify rational expressions?
How do you use the LCD to combine two rational expressions?
Tell whether the following statement is true or false and explain why: You only need to find the LCD when adding or subtracting rational expressions.
Algebraic
For the following exercises, simplify the rational expressions.
x2−16x2−5x+4x2−16x2−5x+4
y2+10y+25y2+11y+30y2+10y+25y2+11y+30
6a2−24a+246a2−246a2−24a+246a2−24
9b2+18b+93b+39b2+18b+93b+3
m−12m2−144m−12m2−144
2x2+7x−44x2+2x−22x2+7x−44x2+2x−2
6x2+5x−43x2+19x+206x2+5x−43x2+19x+20
a2+9a+18a2+3a−18a2+9a+18a2+3a−18
3c2+25c−183c2−23c+143c2+25c−183c2−23c+14
12n2−29n−828n2−5n−312n2−29n−828n2−5n−3
For the following exercises, multiply the rational expressions and express the product in simplest form.
x2−x−62x2+x−6⋅2x2+7x−15x2−9x2−x−62x2+x−6⋅2x2+7x−15x2−9
c2+2c−24c2+12c+36⋅c2−10c+24c2−8c+16c2+2c−24c2+12c+36⋅c2−10c+24c2−8c+16
2d2+9d−35d2+10d+21⋅3d2+2d−213d2+14d−492d2+9d−35d2+10d+21⋅3d2+2d−213d2+14d−49
10h2−9h−92h2−19h+24⋅h2−16h+645h2−37h−2410h2−9h−92h2−19h+24⋅h2−16h+645h2−37h−24
6b2+13b+64b2−9⋅6b2+31b−3018b2−3b−106b2+13b+64b2−9⋅6b2+31b−3018b2−3b−10
2d2+15d+254d2−25⋅2d2−15d+2525d2−12d2+15d+254d2−25⋅2d2−15d+2525d2−1
6x2−5x−5015x2−44x−20⋅20x2−7x−62x2+9x+106x2−5x−5015x2−44x−20⋅20x2−7x−62x2+9x+10
t2−1t2+4t+3⋅t2+2t−15t2−4t+3t2−1t2+4t+3⋅t2+2t−15t2−4t+3
2n2−n−156n2+13n−5⋅12n2−13n+34n2−15n+92n2−n−156n2+13n−5⋅12n2−13n+34n2−15n+9
36x2−256x2+65x+50⋅3x2+32x+2018x2+27x+1036x2−256x2+65x+50⋅3x2+32x+2018x2+27x+10
For the following exercises, divide the rational expressions.
3y2−7y−62y2−3y−9÷y2+y−22y2+y−33y2−7y−62y2−3y−9÷y2+y−22y2+y−3
6p2+p−128p2+18p+9÷6p2−11p+42p2+11p−66p2+p−128p2+18p+9÷6p2−11p+42p2+11p−6
q2−9q2+6q+9÷q2−2q−3q2+2q−3q2−9q2+6q+9÷q2−2q−3q2+2q−3
18d2+77d−1827d2−15d+2÷3d2+29d−449d2−15d+418d2+77d−1827d2−15d+2÷3d2+29d−449d2−15d+4
16x2+18x−5532x2−36x−11÷2x2+17x+304x2+25x+616x2+18x−5532x2−36x−11÷2x2+17x+304x2+25x+6
144b2−2572b2−6b−10÷18b2−21b+536b2−18b−10144b2−2572b2−6b−10÷18b2−21b+536b2−18b−10
16a2−24a+94a2+17a−15÷16a2−94a2+11a+616a2−24a+94a2+17a−15÷16a2−94a2+11a+6
22y2+59y+1012y2+28y−5÷11y2+46y+824y2−10y+122y2+59y+1012y2+28y−5÷11y2+46y+824y2−10y+1
9x2+3x−203x2−7x+4÷6x2+4x−10x2−2x+19x2+3x−203x2−7x+4÷6x2+4x−10x2−2x+1
For the following exercises, add and subtract the rational expressions, and then simplify.
4x+10y4x+10y
122q−63p122q−63p
4a+1+5a−34a+1+5a−3
c+23−c−44c+23−c−44
y+3y−2+y−3y+1y+3y−2+y−3y+1
x−1x+1−2x+32x+1x−1x+1−2x+32x+1
3zz+1+2z+5z−23zz+1+2z+5z−2
xx+1+yy+1xx+1+yy+1
For the following exercises, simplify the rational expression.
6y−4xy6y−4xy
2a+7bb2a+7bb
x4−p8px4−p8p
3a+b62b3a3a+b62b3a
3x+1+2x−1x−1x+13x+1+2x−1x−1x+1
ab−baa+babab−baa+bab
2x3+4x7x2
2cc+2+c−1c+12c+1c+1
xy−yxxy+yx
Real-World Applications
Brenda is placing tile on her bathroom floor. The area of the floor is15x2−8x−7ft2. The area of one tile isx2−2x+1ft2.To find the number of tiles needed, simplify the rational expression:15x2−8x−7x2−2x+1.
The area of Sandy’s yard is25x2−625ft2. A patch of sod has an area ofx2−10x+25ft2. Divide the two areas and simplify to find how many pieces of sod Sandy needs to cover her yard.
Aaron wants to mulch his garden. His garden isx2+18x+81ft2. One bag of mulch coversx2−81ft2. Divide the expressions and simplify to find how many bags of mulch Aaron needs to mulch his garden.
Extensions
For the following exercises, perform the given operations and simplify.
x2+x−6x2−2x−3⋅2x2−3x−9x2−x−2÷10x2+27x+18x2+2x+1
3y2−10y+33y2+5y−2⋅2y2−3y−202y2−y−15y−4
4a+12a−3+2a−32a+34a2+9a
x2+7x+12x2+x−6÷3x2+19x+288x2−4x−24÷2x2+x−33x2+4x−7
Chapter Review Exercises
Real Numbers: Algebra Essentials
For the following exercises, perform the given operations.
(5−3⋅2)2−6
64÷(2⋅8)+14÷7
2⋅52+6÷2
For the following exercises, solve the equation.
5x+9=−11
2y+42=64
For the following exercises, simplify the expression.
9(y+2)÷3⋅2+1
3m(4+7)−m
For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive answer.
11
0
56
√11
Exponents and Scientific Notation
For the following exercises, simplify the expression.
22⋅24
4543
(a2b3)4
6a2⋅a02a−4
(xy)4y3⋅2x5
4−2x3y−32x0
(2x2y)−2
(16a3b2)(4ab−1)−2
Write the number in standard notation:2.1314×10−6
Write the number in scientific notation: 16,340,000
Radicals and Rational Expressions
For the following exercises, find the principal square root.
√121
√196
√361
√75
√162
√3225
√8081
√491250
24+√2
4√3+6√3
12√5−13√5
5√−243
3√2503√−8
Polynomials
For the following exercises, perform the given operations and simplify.
(3x3+2x−1)+(4x2−2x+7)
(2y+1)−(2y2−2y−5)
(2x2+3x−6)+(3x2−4x+9)
(6a2+3a+10)−(6a2−3a+5)
(k+3)(k−6)
(2h+1)(3h−2)
(x+1)(x2+1)
(m−2)(m2+2m−3)
(a+2b)(3a−b)
(x+y)(x−y)
Factoring Polynomials
For the following exercises, find the greatest common factor.
81p+9pq−27p2q2
12x2y+4xy2−18xy
88a3b+4a2b−144a2
For the following exercises, factor the polynomial.
2x2−9x−18
8a2+30a−27
d2−5d−66
x2+10x+25
y2−6y+9
4h2−12hk+9k2
361x2−121
p3+216
8x3−125
64q3−27p3
4x(x−1)−14+3(x−1)34
3p(p+3)13−8(p+3)43
4r(2r−1)−23−5(2r−1)13
Rational Expressions
For the following exercises, simplify the expression.
x2−x−12x2−8x+16
4y2−254y2−20y+25
2a2−a−32a2−6a−8⋅5a2−19a−410a2−13a−3
d−4d2−9⋅d−3d2−16
m2+5m+62m2−5m−3÷2m2+3m−94m2−4m−3
4d2−7d−26d2−17d+10÷8d2+6d+16d2+7d−10
10x+6y
12a2+2a+1−3a2−1
1d+2c6c+12ddc
3x−7y2x
Chapter Practice Test
For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive answer.
−13
√2
For the following exercises, evaluate the equations.
2(x+3)−12=18
y(3+3)2−26=10
Write the number in standard notation:3.1415×106
Write the number in scientific notation: 0.0000000212.
For the following exercises, simplify the expression.
−2⋅(2+3⋅2)2+144
4(x+3)−(6x+2)
35⋅3−3
(23)3
8x3(2x)2
(16y0)2y−2
√441
√490
√9x16
√121b21+√b
6√24+7√54−12√6
3√−84√625
(13q3+2q2−3)−(6q2+5q−3)
(6p2+2p+1)+(9p2−1)
(n−2)(n2−4n+4)
(a−2b)(2a+b)
For the following exercises, factor the polynomial.
16x2−81
y2+12y+36
27c3−1331
3x(x−6)−14+2(x−6)34
For the following exercises, simplify the expression.
2z2+7z+3z2−9⋅4z2−15z+94z2−1
xy+2x
a2b−2b9a3a−2b6a
Glossary
- least common denominator
- the smallest multiple that two denominators have in common
- rational expression
- the quotient of two polynomial expressions
Candela Citations
- Algebra and Trigonometry. Authored by: Jay Abramson, et. al. Provided by: OpenStax CNX. Located at: http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1