## Classify Solutions to Systems in Three Variables

### Learning Outcomes

• Recognize whether a system has one, none, or an infinite number of solutions based on it’s solution.
• Use correct notation to express solutions to systems of three equations.

Just as with systems of equations in two variables, we may come across an inconsistent system of equations in three variables, which means that it does not have a solution that satisfies all three equations. The equations could represent three parallel planes, two parallel planes and one intersecting plane, or three planes that intersect the other two but not at the same location. The process of elimination will result in a false statement, such as $3=7$ or some other contradiction.

### Example: Solving an Inconsistent System of Three Equations in Three Variables

Solve the following system.

\begin{align}x - 3y+z=4 && \left(1\right) \\ -x+2y - 5z=3 && \left(2\right) \\ 5x - 13y+13z=8 && \left(3\right) \end{align}

### Try It

Solve the system of three equations in three variables.

$\begin{array}{l}\text{ }x+y+z=2\hfill \\ \text{ }y - 3z=1\hfill \\ 2x+y+5z=0\hfill \end{array}$

## Expressing the Solution of a System of Dependent Equations Containing Three Variables

We know from working with systems of equations in two variables that a dependent system of equations has an infinite number of solutions. The same is true for dependent systems of equations in three variables. An infinite number of solutions can result from several situations. The three planes could be the same, so that a solution to one equation will be the solution to the other two equations. All three equations could be different but they intersect on a line, which has infinite solutions. Or two of the equations could be the same and intersect the third on a line.

### Example: Finding the Solution to a Dependent System of Equations

Find the solution to the given system of three equations in three variables.

\begin{align}2x+y - 3z=0 && \left(1\right)\\ 4x+2y - 6z=0 && \left(2\right)\\ x-y+z=0 && \left(3\right)\end{align}

### Q & A

#### Does the generic solution to a dependent system always have to be written in terms of $x?$

No, you can write the generic solution in terms of any of the variables, but it is common to write it in terms of $x$ and if needed $x$ and $y$.

### Try It

Solve the following system.

$\begin{gathered}x+y+z=7 \\ 3x - 2y-z=4 \\ x+6y+5z=24 \end{gathered}$

## Contribute!

Did you have an idea for improving this content? We’d love your input.