Blood Calcium and Glucose Levels

Blood Calcium Levels

As you have learned, proper calcium levels are important to maintain whole body homeostasis. Calcium ions are used for the heartbeat, the contraction of muscles, the activation of enzymes, and cellular communication. The parathyroid and thyroid glands of the endocrine system detect changes in blood calcium levels. When the parathyroid glands detect low blood calcium levels, several organ systems alter their function to restore blood calcium levels back to normal. The skeletal, urinary, and digestive systems all act as effectors to achieve this goal through negative feedback.

The release of parathyroid hormone from the endocrine system triggers osteoclasts of the skeletal system to resorb bone and release calcium into the blood. Similarly, this hormone causes the kidneys of the urinary system to reabsorb calcium and return it to the blood instead of excreting calcium into the urine. Through altered function of the kidneys to form active vitamin D, the small intestine of the digestive system increases the absorption of calcium.

When the thyroid gland detects elevated blood calcium levels, the skeletal, urinary, and digestive systems contribute to lower blood calcium levels back to normal. Release of the hormone calcitonin from the thyroid gland of the endocrine system triggers a series of responses. The osteoblasts of the skeletal system use excess calcium in the blood to deposit new bone. The kidneys of the urinary system excrete excess calcium into the urine instead of reclaiming calcium through reabsorption. Lastly, the kidneys stop forming active vitamin D, which causes decreased intestinal absorption of calcium through the digestive system.

Practice Question

Graves’ disease is an autoimmune disease in which the thyroid is overactive, producing an excessive amount of thyroid hormones. Some of the symptoms are heart palpitations and hand tremors.

Which system is impacted by the altered calcium levels in Graves’ disease, according to the symptoms listed above?

  1. skeletal
  2. muscular
  3. urinary
  4. digestive

Blood Glucose Levels

The endocrine functions of the pancreas and liver coordinate efforts to maintain normal blood glucose levels. When pancreatic cells detect low blood glucose levels, the pancreas synthesizes and secretes the hormone glucagon. Glucagon causes the liver to convert the polymerized sugar glycogen into glucose through a process known as glycogenolysis. Glucose then travels through the blood to allow all cells of the body to use it.

If pancreatic cells detect high blood glucose levels, the pancreas synthesizes and release the hormone insulin. Insulin causes polymerization of glucose into glycogen, which is then stored in the liver through a process known as glycogenesis.

The nervous and digestive systems also play a role in maintaining blood glucose levels. When the stomach is empty and blood glucose levels are low, the digestive system and the brain respond by making you feel hungry—your stomach may “growl,” and you may feel pain or discomfort in your midsection. These sensations prompt you to eat, which raises blood glucose levels.

PRactice Question

The liver and pancreas are part of both the endocrine system and the digestive system. What is the utility of having integrated digestion and regulation?


Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More