Temperature

Learning Outcomes

  • Identify ways temperature impacts the biotic factors of biogeography
image

Figure 1. This colorful hot spring in Yellowstone National Park, located in Midway Geyser Basin, is the largest hot spring in the United States and the third largest in the world. Its rich color is the result of thermophilic organisms living along the edges of the hot spring,

Temperature affects the physiology of organisms as well as the density and state of water. Temperature exerts an important influence on living things because few living things can survive at temperatures below 0 °C (32 °F) due to metabolic constraints. It is also rare for living things to survive at temperatures exceeding 45 °C (113 °F); this is a reflection of evolutionary response to typical temperatures near the Earth’s surface. Enzymes are most efficient within a narrow and specific range of temperatures; enzyme degradation can occur at higher temperatures. Therefore, organisms either must maintain an internal temperature or they must inhabit an environment that will keep the body within a temperature range that supports metabolism. Some animals have adapted to enable their bodies to survive significant temperature fluctuations, such as seen in hibernation or reptilian torpor. Similarly, some Archaea bacteria have evolved to tolerate extremely hot temperatures such as those found in the geysers within Yellowstone National Park. Such bacteria are examples of extremophiles: organisms that thrive in extreme environments.

The temperature (of both water and air) can limit the distribution of living things. Animals faced with temperature fluctuations may respond with adaptations, such as migration, in order to survive. Migration, the regular movement from one place to another, is an adaptation found in many animals, including many that inhabit seasonally cold climates. Migration solves problems related to temperature, locating food, and finding a mate. For example, the Arctic Tern (Sterna paradisaea) makes a 40,000 km (24,000 mi) round-trip flight each year between its feeding grounds in the southern hemisphere and its breeding grounds in the Arctic Ocean. Monarch butterflies (Danaus plexippus) live in the eastern and western United States in the warmer months, where they build up enormous populations, and migrate to areas around Michoacan, Mexico as well as areas along the Pacific Coast, and the southern United States in the wintertime. Some species of mammals also make migratory forays. Reindeer (Rangifer tarandus) travel about 5,000 km (3,100 mi) each year to find food. Amphibians and reptiles are more limited in their distribution because they generally lack migratory ability. Not all animals that could migrate do so: migration carries risk and comes at a high-energy cost.

A chipmunk curled up tightly in its burrow

Figure 2. Chipmunks hibernate for the winter, but they come out of sleep every few days to eat.

Some animals hibernate or estivate to survive hostile temperatures. Hibernation enables animals to survive cold conditions, and estivation allows animals to survive the hostile conditions of a hot, dry climate. Animals that hibernate or estivate enter a state known as torpor: a condition in which their metabolic rate is significantly lowered. (Estivation is when topor occurs during the summer months with high temperatures and little water.) This enables the animal to wait until its environment better supports its survival. Some amphibians, such as the wood frog (Rana sylvatica), have an antifreeze-like chemical in their cells, which retains the cells’ integrity and prevents them from freezing and bursting.

Try It